
SoftwSoftwSoftwSoftwSoftwareareareareare

ConfigurConfigurConfigurConfigurConfiguraaaaation Managementtion Managementtion Managementtion Managementtion Management

TTTTTececececechnologies and Applicahnologies and Applicahnologies and Applicahnologies and Applicahnologies and Applicationstionstionstionstions

STSSTSSTSSTSSTSC TC TC TC TC Tececececechnology Reporhnology Reporhnology Reporhnology Reporhnology Reporttttt

Embedded Computer Resources (ECR)
Support Improvement Program

Software Technology Support Center

Sponsored by

Executive Summary
Software Configuration Management (SCM) is a discipline
to manage the evolution of computer program products
during all stages of development and sustainment. The ben-
efits derived from SCM are directly proportional to the
extent that SCM is implemented. An effective SCM pro-
gram: (1) supports delivery of a product that meets the
stated requirements, (2) tracks each requirement and deliv-
erable from concept through implementation to customer
delivery, and (3) ultimately moves toward delivery of the
product on schedule and within budget.

Measurements can be collected and combined into one
or more metrics, which identify the performance of the pro-
cesses. They are used to measure the progress of a project
and the quality of its product.

The importance of SCM becomes evident in light of the
return on investment and cost savings potential. When SCM,
measurements, and their associated metrics are used from
the beginning of a program through its conclusion, the pay-
off can be enormous.

With each new software project or process, there is some
amount of risk associated with it. Managing and control-
ling the risk is essential to the success of the project in
Software Configuration Management Technologies and Applications
terms of cost, schedule, and quality. An SCM risk man-
agement plan should be developed which focuses on three
areas: business or product, human resources , and technology.

SCM encompasses the every day tasks within an orga-
nization, whether they be software development or sustain-
ment. The software changes are identified, controlled, and
managed throughout project lifecycle.

SCM is divided into the following functional areas: Iden-
tification, Change Control, Status Accounting, and Audit.
An SCM plan describes what is to be done in each of these
areas and “provides the focus for the process and proce-
dures, and is the mechanism used to communicate the CM
process to the other organizational groups on the project.”
[Bounds 96] Automating SCM consists of all the steps in-
volved in introducing an SCM tool into an organization
and ensuring that it is routinely used on all projects. Imple-
menting a series of six phases can successfully carry out
SCM automation. They are preparation and planning, pro-
cess definition, tool evaluation, pilot project implementa-
tion, rollout to other projects, and process improvement.
The phases provide structured guidance, identify tasks, and
address the complexities involved with automating SCM.
i

Table of Contents
ii
Executive Summary ... i
Table of Contents .. ii
Abstract ... iii
Acknowledgements .. iii

1. Overview of Software Configuration Management .. 1
1.1 The Role of SCM .. 1
1.2 State of SCM ... 2
1.3 Current Trends in SCM ... 2

2. Importance of Software Configuration Management 4
2.1 SCM and Process Improvement .. 4
2.2 Measurements and Metrics ... 5
2.3 Benefits of SCM .. 5

3. Software Configuration Management Technology Primer 10
3.1 What is SCM ... 10
3.2 Implementing SCM in the Organization ... 15
3.3 Writing the Formal SCM Plan .. 18
3.4 Automating SCM .. 19
3.5 SCM Standards ... 22

4. Case Studies and Lessons Learned .. 24
4.1 Case Studies ... 24
4.1.1 Selecting an SCM Tool ... 24
4.1.2 Overcoming Barriers to SCM .. 24
4.1.3 Implementing SCM with an Electronic Database .. 24
4.1.4 Obtaining SEI SW-CMM Level 2 Certification ... 25
4.2 Lessons Learned ... 25
4.2.1 The Importance of Planning ... 25
4.2.2 Things to Remember ... 26

Appendix ... 27
A: Availability of Templates, Forms, and Checklists ... 27
B: Configuration Management Tool Summary ... 28
C: Training and Education ... 32
D: STSC’s SCM Services ... 34
E: Overview of SEI’s SW-CMM .. 36
F: Acronyms and Glossary .. 38
G: Bibliography .. 43
Software Technology Support Center

Acknowledgements

This report was prepared by the following individuals:
Janiece Jones, Paul Hewitt, Russell Lee, Larry Smith, and
Reed Sorensen. Special thanks to Bruce Angstadt and Bob
Ventimiglia for their valuable contributions.

Mr. Angstadt is an independent consultant in SCM with
over 30 years experience in private industry programs
and government agency funded contracts. He can be
reached at: 269 Marion Street, Indian Harbour Beach,
FL 32937; (voice) 407-777-7914; (fax) 407-723-9852;
info@scmtoday.com. He also teaches SCM, Engineer-
ing Support Management, and related disciplines for
System Technology Institute, P.O. Box 6907, Malibu,
CA 90264-6907; www.stitraining.com.

Mr. Ventimiglia is a SCM Manager for Lockheed Martin
Aeronautical Systems where he is leading advanced Effec-
tive SCM implementations for LMAS Software-Intensive
Systems on the Hercules C130J and Spartan C27J pro-
grams. He can be reached at: Lockheed Martin Aeronauti-
cal Systems, 86 South Cobb Drive, Marietta, GQ 30063-
0685; (voice) 770-494-9791; (fax) 770-494-1345;
bventimi@hercii.mar.lmco.com. He also teaches SCM and
Advanced SCM for Technology Training Corporation, P.O.
Box 3608, Torrance, CA 90510-3608; www.ttcus.com.
Software Configuration Management Technologies and Applications
For more information, please contact the STSC below.
Software Technology Support Center
United States Air Force
Ogden Air Logisitics Center (OO-ALC/TISE)
7278 4th Street
Hill Air Force Base, Utah 84056
www.stsc.hill.af.mil
Fax: 801-777-8069

Representations. The ideas and findings in this report should
not be construed as an official Air Force position. It is
published in the interest of scientific and technical infor-
mation exchange.
References. The STSC makes every attempt to acknowledge
the sources of information used, including copyrighted ma-
terial. If for any reason a reference has been misquoted or
a source used inappropriately, we would like it brought to
our attention for rectification or correction.
Trademarks and Designations. Many of the designations
and product titles used by manufacturers and sellers to dis-
tinguish their production are claimed as trademarks. The
STSC has made every attempt to supply trademark infor-
mation about manufacturers and their products mentioned
in this report. The trademarks are the property of their
respective owners.
Abstract
Software Configuration Management (SCM) is the back-
bone of the software development process. When it is imple-
mented correctly it helps ensure software quality and pro-
cess improvement.

The purpose of this report is to provide current infor-
mation on basic SCM principles, methods, and technolo-
gies, and identifies their value in improving software qual-
ity. It should be used as a first step in transferring effective
SCM processes and products into practical use.
This report also provides an overview of SCM concepts,
what it is and how to implement an SCM process as well as
SCM standards, current trends and future directions for
SCM, measurements and metrics, case studies, and les-
sons learned.

Emphasis is placed on the need for organizations to de-
velop a long-term SCM solution by developing a detailed
SCM plan and defining the SCM process before imple-
menting an automated system.
iii

1Overview of Software
Configuration Management
1.1 The Role of SCM
Software Configuration Management (SCM) is the disci-
pline for managing the evolution of computer program prod-
ucts during all stages of development and sustainment.
During the last decade, software technology has progressed
at breathtaking speeds. However, our ability to manage the
complexity of problems with software development and our
ability to develop processes to handle this rapid change has
not increased as quickly.

The ability to develop and deliver reliable, usable software
within budget and schedule commitments continues to elude
most software organizations. After two decades of unful-
filled promises about productivity and quality gains from
applying new software methodologies and technologies, or-
ganizations are now realizing that their fundamental prob-
lem is the inability to manage the software process, if in fact
any organizational process exists. In many organizations,
projects are often excessively late and over budget, and the
benefits of better methods and tools cannot be realized in the
maelstrom of an undisciplined, chaotic project. [Paulk 95]

SCM provides the means to manage software processes
in a structured, orderly, and productive manner. SCM spans
all areas of the software lifecycle and impacts all data and
processes. Hence, maximum benefit is derived when SCM
is viewed as an engineering discipline rather than an art.

Depending on where you go and who you ask, you will
always get different answers to the question, “Is Software
Configuration Management a support or a control organi-
zation?” Even if you ask two people working on the same
Software Configuration Management Technologies and Applications
program, you are likely to get different answers. Those people
who are afraid that it’s a trick question, or because they want
to appear to be a bit on the profound side of things, will
respond with, “Why, it’s both, of course.” But when asked
what they mean by that, well, they usually have other press-
ing matters to attend.

The answer is that SCM is both a support and control
organization, and when it is handled properly, a third fac-
tor is drawn into the picture, that of being a service.

If you talk with a software developer, they are likely to
tell you that they want support and some measure of con-
trol, but not too much. Management on the other hand will
generally say that controls are the more important issue, as
long as they don’t impact costs and schedules. An SCM per-
son with 10 or more years of experience, probably a first line
supervisor or manager, will agree with management but will
also insist that sometimes cost and schedule must be im-
pacted. An SCM person with fewer years under their belt
will generally side with the software developer and strive to
do whatever is necessary to assist them and get the job done.

The question becomes “How can SCM best accomplish
both support and control issues and be of service while add-
ing value to the program effort?”

Support. SCM is a support function in that it supports
program engineers and developers, the program, the corpo-
ration, and in a number of situations, the customer.

Control. SCM is a control function in that it controls
specifications, documents, drawings, requirements, tools,
software, and other deliverables.
1

Service. SCM is a service provider in that it supports
people and controls data. This one simple sentence is the
primary key to a successful configuration management op-
eration.

The SCM staff must be able to wear two completely dif-
ferent hats: one to support people, and one to control data.
And when those two hats get mixed up, i.e., SCM tries to
control people and what/how they do things, problems and
bottlenecks show up on the immediate horizon. And when
that happens, all too often SCM is bypassed for the sake of
“get the job out the door and we’ll fix it later.”

Additionally, the role of the SCM Manager is to ensure
that: (1) SCM personnel are properly trained and have the
necessary resource (budget and tools) to do an efficient and
effective job; (2) a proper balance of control and support is
tailor made to each program that is being supported; and,
(3) the SCM function is flexible and can accommodate the
changing needs and requirements of the developers, custom-
ers, the program and the company.

1.2 State of SCM
The SCM task has not really changed much during the last
20 to 30 years. However, the environment that SCM oper-
ates within has changed significantly and is likely to con-
tinue to change. Mr. Angstadt adds:

Certainly the software language bases have changed; from
Basic, COBAL and FORTRAN, to Ada and Pascal, to C++,
Java, and numerous others. But that has not been the real
impact to SCM; after all, code by any other name is still code.

The more significant impacts to SCM have been cen-
tered on the automated tools and the library systems they
operate on.

The tools have progressed from version control and semi-
automatic build operations to systems that can now estab-
lish and monitor the entire software development and pro-
duction environment. The tools are more sophisticated and
the suppliers more numerous. Not long ago it was a some-
what simple matter for SCM to determine the best tool for
the job. But in today’s market new issues have to be addressed
before a decision is made. It has become increasingly im-
2

portant for representatives from each department within
engineering organizations to now consider, evaluate, and
weigh their requirements against the capabilities of the vari-
ous tools that are available. The SCM automated tools avail-
able today, and those still on the drawing boards, are much
more versatile than their forerunners. However, when asked,
“Isn’t there one tool out there that will do it all?” The answer
is still no! And it is due in large part to the fact that the
environment SCM operates within is still evolving.

1.3 Current Trends in SCM
In the not too distant past, SCM dealt with code and a few
documents, each carefully tucked away into a baseline where
it could be easily controlled. Mr. Angstadt further adds:

 With the introduction of web based repositories and sig-
nificantly increased involvement with Commercial-off-the-
shelf (COTS), vendor, and subcontractor applications,
baselines, as originally defined, are quickly becoming a thing
of the past. Baselines are becoming conceptual in nature.
After all, when is the last time you “saw” a Functional, Allo-
cated, or Product Baseline? Probably when you were dealing
with hardcopy documents and printed listings of programs.
But in the electronic office these are no where to be found.
The tendency now is to refer to the current version of con-
trolled entities (code, documents, requirements, etc.) as the
Baselined Version. Previously controlled versions are now
referred to as the Archived Baseline Version.

In the past, most programs operated with three baselines:
Functional, Allocated, and Product, or Requirements, De-
sign, and Product, or some other set of descriptive labels.
The National Aeronautics and Space Administration (NASA)
once tried a system with nine baselines; it had a short life
span. NASA, and the greater majority of other developers as
well, were going on the assumption that it was important to
know into which baseline the controlled items were placed.
Actually, the primary concern should be that the item is
baselined and not changed without going through a formal
process; not simply a name given to an electronic partition
where the item resides.
Software Technology Support Center

What is driving this move away from our three tradi-
tional baselines? It is the questions being raised by SCM and
other developers. Questions like “Where do I put this .JPG
file that is used in different documents?”, “Shouldn’t the Build
Scripts and Make Files be controlled too?”, “Where do we
control corporate assets known as, or to be captured as, Re-
usability or Re-engineered issues?”, et cetera, used to be asked.

The questions, however, are now becoming: “Does the
control board control the document or the information it
conveys?”, “Does the control board control the software
Software Configuration Management Technologies and Applications
code or what it does, how it does it, and all things used to
create it?”, et cetera.

In the past, SCM controlled code and sometimes, but
not always, documentation. What can be baselined in the
environments we are beginning to deal with now? The easier
question is “What can’t be baselined?” Answer, SCM can
baseline anything that the program needs to control and make
available. Answer, SCM controls data (in any form) so that
it can support people and provide an integral service to the
program.
3

Importance of
Software Configuration Management 2
2.1 SCM and Process Improvement
The theme of the 1998 Software Engineering Institute Sym-
posium was “Improving WHAT you build means improv-
ing HOW you build” [Carnegie 98]. In other words, im-
provement depends on changing current processes and the
accompanying environment. According to an old adage “if
you do what you’ve always done, you’ll get what you’ve al-
ways got.” SCM provides the underlying structure for change
and process improvement.

For example, the first step to improve the product is to
know how the product is currently produced. The second
step for improvement is to foster an atmosphere where change
can be accommodated. If change does not appear possible,
then improvement is also unlikely. SCM measurements of
current practices and their associated metrics can help iden-
tify where processes are working and where they need to be
improved. Such change efforts should lead to increased pro-
ductivity, integrity, conformance, and customer satisfaction.
A change must add value, or it should not be made.

The Institute of Configuration Management (ICM)
defines configuration management (CM) as “the process
of managing the full spectrum of an organization’s prod-
ucts, facilities and processes by managing all requirements,
including changes, and assuring that the results conform
to those requirements” [ICM 98]. By this definition CM
can also be called process configuration management, since
it includes the process of managing an organization’s pro-
cesses and procedures.

Many organizations can be characterized as Level 1 orga-
nizations as defined in the Software Engineering Institute’s
4

Software Capability Maturity Model (SEI SW-CMM). These
Level 1 organizations rely heavily on “heroes” to accomplish
the work. The organization’s processes are not documented
and few people know how the work is accomplished. “The
software process is characterized as ad hoc, and occasionally
even chaotic. Few processes are defined, and success depends
on individual effort and heroics.” [Paulk 95]

An effective SCM program, when applied to organiza-
tional processes, identifies which processes need to be docu-
mented. Any changes to those processes are also tracked and
documented. Adhering to these processes will reduce an
organization’s dependence on heroics for the work to be ac-
complished and the project to succeed. It also relieves the
frustration and problems that arise if one of the “heroes” is
not available to perform a task.

SCM is an essential discipline in the every-day activities
of defining requirements, designing, writing, compiling, test-
ing, and documenting the software. SCM is not simply ver-
sion control or format control. It is not a clerical “after-the-
fact” function. It is a technical field of expertise with formal
practices.

The benefits derived from SCM are directly proportional
to the extent SCM is implemented. The primary objective is
to deliver a quality product that meets the stated require-
ments, on schedule, and within budget. An effective SCM
program supports this objective by tracking each require-
ment from concept through implementation to customer
delivery.
Software Technology Support Center

2.2 Measurements and Metrics
The status accounting aspect of SCM provides manage-
ment visibility into the state of the software products. Sta-
tus accounting data includes measurements that can show
the location of bottlenecks in the software development and
sustainment process, and can indicate the maturity of the
software products.

As an example of the later of these two, extracts from
[Hermann 98] describe the use of software changes to mea-
sure product maturity and readiness to deliver the software
(see side bar on this page and the following). This articles goes
on to mention other metrics that may be useful, including:
average severity, severity level distribution, average closure
time, charts for each severity level, and charts for each
configuration item or subsystem.

Beyond the scope of the aforementioned article, a brief
discussion on measures and metrics, as they pertain SCM,
can assist SCM practitioners in their efforts to manage and
control software systems.

A measure can be defined as “a standard of measure-
ment, the extent, dimensions, capacity, etc., of anything,
especially as determined by a standard, an act or process of
S

0

1000

2000

3000

4000

5000

6000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Period Number Weekly

C
ha

ng
e

P
o

in
ts

Originate Closed Remaining

Figure 1. Accumulated software changes (weighted).
Software Product Maturity Data Requirements
Our experience shows that most developer and pro-
curement offices already collect the data necessary
to perform a software product maturity evaluation
(and consequently readiness to deliver). Data that
describes and tracks documented software changes
served as the key input to the evaluation. Following
are the minimum data required for each software
change to evaluate software product maturity.
· Software change (problem) number
· Description
· Computer Software Configuration Item (CSCI)

Identifier.
· Severity level.
· Date change opened (or problem found)
· Date change (problem) closed and implemented.
oftware Configuration Management Technologies and Applications
External factors
To correctly gauge readiness to deliver, developers
must also evaluate test completeness, test rates, and
requirements stability. Any of these factors can cause
product maturity to look unrealistically good or bad.
Obviously, if only 10 percent of the planned tests
have been completed, it is premature to ship the
product—despite low software change trends. Like-
wise, high test rates will likely produce more change
and problems than lower test rates. Requirements
instability is one of the most common causes of soft-
ware product immaturity of the Department of
Defense’s long development cycle projects.

Trend Charts and Analysis
Software product maturity evaluation entails a
graphics analysis of change data trends in the con-
text of project schedule and other external fac-
tors. The basic product maturity chart (Figure 1.)
shows the total changes originated, closed, and remain-
ing trends. (Note: These charts contain data from
5

6

0

100

200

300

400

500

600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Period Number Weekly

N
um

be
r

of
 C

ha
ng

es

Severity 1 Severity 2 Severity 3 Severity 4 Severity 5

0

0

0

0

0

0

0

CSCI
#14

CSCI
#11

CSCI
#5

CSCI
#7

CSCI
#12

CSCI
#15

CSCI
#6

CSCI
#8

CSCI
#3

CSCI
#13

CSCI
#10

CSCI
#9

CSCI
#2

CSCI
#4

CSCI
#1

Computer Software Configuration Item

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

O
pe

n
C

ha
ng

es
/K

L
O

C

Remaining Changes Remaining Changes/KLOC

Figure 2. Remaining software problems (unweighted).
multiple, real systems and are provided as ex-
amples only.) To indicate maturity or progress
toward maturity, the total changes origi-
nated trend should begin to level off. This
indicates testing is finding problems at a de-
creasing rate. If problems are being closed
efficiently, the total changes closed curve
should closely follow the total originated
trend. Ideally, all identified changes are
closed, and the remaining changes curve
would show no backlog.

Although the remaining changes trend in
the basic chart shows the current software
problem or change backlog, Figure 2 pre-
sents a more useful view. This stacked bar
chart shows the overall backlog trend as
well as each severity level’s contribution to
the total backlog. (Note that the severity
levels are those found in MIL-STD-498 in
Appendix C, where 1 represents mission

5

10

15

20

25

30

R
em

ai
ni

n
g

C
ha

ng
es
Figure
threatening and 5 represents less impact than
a user inconvenience.)

Figure 3 shows both remaining changes for
each CSCI sand the defect density (the num-
ber of remaining changes or problems divided
by thousands or new or modified source lines
of code.) In addition to the minimum change
data, defect density analysis requires code size
information. Literature suggests software is not
ready for release until the defect density is be-
low 0.5 [1]. Rather than blindly endorse this
number, we suggest developers select a thresh-
old of their own. Finding portions of software
with the most remaining problems and the high-
est defect densities are two additional pieces
to the product maturity puzzle.

Reference
1. Foody, Michael A., “When is Software Ready

for Release?” UNIX Review, March 1995.
Software Technology Support Center

 3. Remaining changes and defect density.

measuring, a result of measurement” [Starrett 98]. Ex-
amples of a measure are the number of defects found in a
release or the number of source lines of code delivered.

A metric can be defined as “a calculated or compos-
ite indicator based on two or more measures, or a quan-
tified measure of the degree to which a system, compo-
nent, or process possesses a given attribute. An example
of a metric is defects per thousand source lines of code”
[Starrett 98].

A metric can also be “a composite of measures that
yields systematic insight into the state of processes or prod-
ucts and drives appropriate actions” [Pitts 97]. Measures
(measurements) and metrics can be used to identify areas
of the process that require attention. These areas are iden-
tified through compiling measurements into metrics. Mea-
surements are compiled in an electronic spreadsheet, data-
base, or by hand. There are also several management tools
that allow collection of measurements and derivation of
metrics. The format is not the issue, the data is. Examples
of some basic measurements are listed on the following
page in Table 1.0.

A metrics program should include the following funda-
mentals [Pitts 97]
· A motive which is compelling, not simply conformism.
· Benchmarks that define nominal operation of the soft-

ware development process.
· Goals that define the purpose of the metrics program.
· Strategy for achieving the goals.
· An appropriate model (COCOMO, SLIM, etc.) whether

it be a mathematical model or heuristic.
· Collection of data that is unobtrusive.
· Analysis of the data to find patterns: patterns imply con-

sistency, and consistency implies process.
· Action on the analysis – change in the process to achieve

better results.
· Implementation ethics including trust, value, commu-

nication and understanding.

Of course, a record should be kept which documents the
efforts of the metrics program and the results.
Software Configuration Management Technologies and Applications
Measurements are combined into one or more metrics,
which help identify the performance of the processes—
which are satisfactory and which are not. They are used to
measure the progress of a project, the quality of its prod-
uct, the effort necessary to complete the project, et cetera.
One desired outcome of compiling and using these metrics
to improve processes is the improvement of the product’s
value to cost ratio. If a change in a process yields an in-
crease in production during a specific time frame, or yields
the same production in a decreased time frame, the value
to cost ratio is improved.

Another desired outcome is increased customer satis-
faction through meeting their requirements. For example,
if defects in software can be traced back to incomplete or
faulty requirements definition, the requirements definition
process should be reviewed to increase the clarity and com-
pleteness of the requirements. The metrics may help show
that the customer needs to be more actively involved in
defining the requirements clearly and precisely.

The implementation of a metrics program, compiling
measurements and statistics, and then using them, is a
great method for refining processes and improving the
product. Basic measurements, combined into metrics,
can help pinpoint faulty processes and help determine a
course of action to make them more effective. The result
is a product which is delivered in a timely fashion, with
few defects, as budgeted.

2.3 Benefits of SCM
There are many benefits to be gained by an organization
that practices SCM. Software developers, testers, project
managers, Quality Assurance (QA) personnel, and the cus-
tomer may benefit from SCM. The following is a partial list
of some of these benefits.

· Organizes tasks and activities that maintain the integ-
rity of the software.

· Helps manage assets.
· Provides ability to track changes made during sequen-

tial or parallel development.
7

8 Software Technology Support Center

Table 1. Generic measurements and metrics for a Software Change Process.

Process Phase Sample Measurements
System Design Change Requests · Title · Number · Originator

· Description · Change Request Cross Reference · Estimated/Actual Effort1
· Program Information · Assets Required · Assigned Engineer(s)
· Date and Signature Field · Status2 · Documentation Readiness
· Test Stand Impact · Priority3 · Risk
· CM Information · Test Plan · Peer Review Information
· Review Board Disposition · Close-out Action

Sub-system Design Change Requests · Same as System Design Change Request · Type of Change4

Software Design Change Requests · Same as System/Sub-system Design Change Request
· Source Lines of Code · Functional Test Results · List of Modules Changed
· Memory Impact · Duty Cycle Impact

Interface Change Requests · Same as System Design Change Request
· List of Interface words affected · Description of each

Problem Reports (for each Phase) · Same as System Design Change Request
· Severity of Error5 · Customer Effect · Cause of Error
· Reproduction Procedure · Development phase when introduced

Examples of Derived Metrics · Man-hours per Project · Cycle Time of Project · Errors per KSLOC
· Schedule Variances · Change Category Count · Requirements Volatility
· Changes by Type · Changes by Source · Average Effort per Change
· Tests per Requirement · Costs Variances · Defects per Release
· SLOC per Hour of Effort · Return on Investment · Cost Savings

Notes
1Estimated/Actual Effort example · Requirements collection · Requirements definition · Documenting software

· System design · Evaluating errors · Subsystem design
· Gathering measurements · Defining metrics · Analyzing metrics
· Writing software · Writing test procedures · Testing software
· Debugging software · Prepare for/attend peer reviews · Prepare for/perform inspections

2Status example · Proposed · In-analysis · In-implementation
· Completed/Closed-out · In-rework · Deferred

3Priority example · High · Medium · Low
4Type of Change example · Enhancement · Clarification · New requirement

· Interface · Error Correction · Error prevention
5Severity of Error example · Show-stopper · Major · Minor

· Typographical · Nuisance

· Ensures correct configurations of software, i.e. compat-
ible configurations.

· Ensures that engineers are implementing changes into
the correct “baseline” or version of the software.

· Provides the ability to trace the process from requirement
to product.

· Limits legal liability by recording all data—whether flat-
tering to the company or not—including memos, deci-
sions, meeting minutes, changes to requirements/code/
test procedures, et cetera, providing a “paper trail”.

· Helps reduce the lifecycle cost of maintaining or sus-
taining software (especially for military applications)
which can easily exceed the initial cost of development.

· Allows responsibility to be traced to the source; i.e. a
requirement problem, coding problem, et cetera.

· Provides for consistent conformance to customer re-
quirements.

· Provides a stable environment for the software develop-
ment process to be defined, repeated, and improved.

· Enhances compliance with standards being applied.
· Provides an environment in which meaningful measures

can be gathered and used.
Software Configuration Management Technologies and Applications
· Enhances current status accounting.
· Provides data for reports that can be easily generated.
· Allows quick and easy auditing.
· Provides the ability to reproduce circumstances/condi-

tions under which the product was produced by retain-
ing information relative to the production process (tracks
changes made to baselines, hardware, compiler versions,
etc.).

· Provides communication channels between groups (sys-
tem, subsystem, test, interface, etc.).

· Fosters an ability to improve without being punitive in
nature.

· Provides an understanding of when the product is ready
for release (when all changes have been processed com-
pletely).

· Helps produce higher quality software.

SCM provides visibility into the status of the evolving
software product. Software developers, testers, project man-
agers, Quality Assurance (QA) personnel, and the customer
benefit from SCM information.
9

3Software Configuration Management
Technology Primer

Figure 1. Functional Elements of Software Configuration Management.

Software
Configuration
Management

Identification
Change
Control

Status
Accounting

Audit
3.1 What is Software Configuration
Management?
Software Configuration Management (SCM) is a discipline
to manage the evolution of computer program products dur-
ing all stages of development and sustainment. The Soft-
ware Engineering Institute Capability Maturity Model (SEI
SW-CMM) defines SCM as stated below.

“[SCM] involves identifying the configuration of the soft-
ware (i.e., selected software work products and their descrip-
tions) at given points in time, systematically controlling changes
to the configuration, and maintaining the integrity and trace-
ability of the configuration throughout the software lifecycle.
The work products placed under software configuration man-
agement include the software products that are delivered to
the customer (e.g., the software requirements document and
the code) and the items that are identified with or required to
create these software products (e.g., compiler).” [Paulk 93]

SCM provides visibility into the status of the evolving
software product. Software developers, testers, project man-
agers, Quality Assurance (QA) personnel, and the customer
benefit from SCM information. SCM answers who, what,
when, and why.
· Who makes the changes?
· What changes were made to the software?
· When were the changes made?
· Why were the changes made?

SCM encompasses the every day tasks within an organiza-
tion, whether they be software development or sustainment.
10
The software changes are identified, controlled, and man-
aged throughout project lifecycle. Ten key SCM activities
for most common development environments are:
· Accessing and retrieving software
· Retrofitting changes across the development lifecycle
· Migrating changes across the development lifecycle
· Managing the compile and build process
· Managing the distribution of changes
· Obtaining approvals and signoffs
· Managing software change requests
· Coordinating communication between groups
· Obtaining project status
· Tracking bugs and fixes [Platinum 98].

SCM is divided into the following functional areas: (1)
Identification, (2) Change Control, (3) Status Accounting,
and (4) Audit (see Figure 1).
Software Technology Support Center

3.1.1 Configuration Identification
Configuration identification involves identifying the struc-
ture of the software system, uniquely identifying individual
components, and making them accessible in some form. The
goal of configuration identification is to have the ability to
identify the components of a system throughout its lifecycle
and provide traceability between the software and related
software products. Identification answers What is the con-
figuration of my system? What version of the file is this? and
What are the components of the system?

Configuration identification activities include:
· Selecting items to be placed under SCM control.
· Developing the software hierarchy.
· Creating an identification scheme that reflects the

software hierarchy.
· Identifying which version of a component can or can-

not be included in a working release.
· Uniquely identifying the various revisions of the soft-

ware product.
· Defining relationships and interfaces between the

various software products.
· Releasing configuration documentation.
· Establishing configuration baselines [MIL-HDBK-

61 97].
1

1.1

1.1.1

1.1.1.1

1.1.1.1.1

1.

1.1.2 1.1.3 1.2.1

1.1.2.1

1.1.3.1 1.1.3.2

Figure 2. Software Configuration Identification Hierarchy.

Software Configuration Management Technologies and Applications
Figure 2 presents a typical breakdown of software into its
distinct parts and presents a numbering scheme that uniquely
identifies each component of a baseline release. The number
to the left of the dot is the last baseline or major release. The
number to the right of the dot is the version since the last
baseline or minor release. Normally, after a new baseline,
major release, the number to the right of the dot is zero. A
hierarchical scheme is used.

Although key components to be managed are the re-
quirements and source code, related documentation and
data should be identified and placed under SCM control. It
is important to store and track all environment informa-
tion and support tools used throughout the software lifecycle
to ensure that the software can be reproduced. Following
are examples of items typically put under SCM control.
· Source code modules.
· System data files.
· System build files/scripts.
· Requirements specifications.
· Interface specifications.
· Design specifications.
· Software architecture specifications.
· Test plans.
2 1.3

1.2.2 1.3.1 1.3.2

1.3.2.1 1.3.2.2

1.3.1.1 1.3.1.2

1.3.1.1.1 1.3.1.1.2 1.3.1.2.1

11

Software
Change

Software
Enhancements

END

Verify
Change

Supply
Feedback

to Originator

Approve?
Archive
Change

Incorporate
Change

Engineering
Change Proposal

Preparation

Analyze
and

Assess Impact

Evaluate
Engineering

Change Proposal

Problems

Review
Board

Figure 3. Generic Change Process [Berlack 92].

Yes No

Control
Board
· Test procedures.
· Test data sets.
· Test results.
· User documentation.
· Software development plan.
· Quality plans.
· Configuration management plans.
· Compilers.
· Linkers and loaders.
· Debuggers.
· Operating systems.
· Shell scripts.
· Third-party tools.
· Other related support tools.
· Procedure language descriptions.
· Development procedures and standards [Kasse 97].

“Effective configuration identification is a prerequisite for the
other configuration management activities (configuration con-
trol, status accounting, and audit), which all use the products
of configuration identification. If configuration items and their
associated configuration documentation are not properly iden-
tified, it is impossible to control the changes to the items’
configuration, to establish accurate records and reports, or to
validate the configuration through audit. Inaccurate or in-
complete identification of configured items and configura-
tion documentation may result in defective products, sched-
ule delays, and higher maintenance cost after delivery.”
[MIL-HDBK-61 97]

3.1.2 Configuration Change Control
Configuration change control involves controlling the re-
lease and changes to software products throughout the soft-
ware lifecycle. It “is perhaps the most visible element of con-
figuration management. It is the process to manage
preparation, justification, evaluation, coordination, disposi-
tion, and implementation of proposed engineering changes
and deviations to affected configuration items and baselined
configuration documentation.” [MIL-HDBK-61 97] The
12
goal of configuration change control is to establish mecha-
nisms that will help ensure the production of quality soft-
ware. As well as ensure that each version of the software con-
tains all necessary elements, and that all elements in a version
will work correctly together. A generic change process is iden-
tified in Figure 3.

Configuration change control answers What is controlled?
How are the changes to the products controlled? Who controls
Software Technology Support Center

the changes? When are the changes accepted, received, and
verified?

Configuration change control activities include
· Defining the change process.
· Establishing change control policies and procedures.
· Maintaining baselines.
· Processing changes.
· Developing change report forms.
· Controlling release of the product.

“All changes made to the configuration management
baselines or baselined software configuration items should
be done according to a documented change control pro-
cess. The change control process should specify:

· Who can initiate the change requests.
· What the criteria is for placing the software compo-

nents under formal change control.
· The “change impact” analysis expected for each re-

quested change.
· How revision history should be kept.
· The Check-in/Check-out procedures.
· The process the Software Configuration Control

Board (SCCB) follows to approve changes.
· How change requests will be linked to the Trouble

Reporting System.
· How change requests are tracked and resolved.
· The reviews and regression tests that must be per-

formed to ensure that changes have not caused unin-
tended effects on the baseline.

· The procedure that will be followed to update all
affected software lifecycle components to reflect the
approved changes.

“To have effective configuration control that truly sup-
ports project development, it is important to establish a
change control process that specifies: who can initiate the
change requests; the individuals, group, or groups who are
responsible for evaluating, accepting, and tracking the
change proposals for the various baselined products; the
“change impact” analysis expected for each requested
Software Configuration Management Technologies and Applications
change; and how the change history should be kept.” [Kasse
97]

In order to control changes made to configuration items
or the system, many organizations establish a Software Con-
figuration Control Board (SCCB). The board reviews each
proposed change, approves or disapproves it, and if approved,
coordinates the change with the affected groups.

Another key concept of change control is the use of
baselines. A baseline is “a specification or product that has
been formally reviewed and agreed upon, that thereafter
serves as the basis for further development, and that can be
changed only through formal change procedures.” [IEEE
90] When an item is baselined, it becomes frozen and can
only be changed by creating a new version. Historically
three different types of baselines were used: functional, al-
located, and product. The functional baseline is the initially
approved documentation describing the functional charac-
teristics and the verification required to demonstrate the
achievement of those specified functional characteristics.
The allocated baseline is the initially approved documenta-
tion describing the interface requirements, additional de-
sign constraints and the verification required to demon-
strate the achievement of those specified functional and
interface characteristics. The product baseline is the ini-
tially approved documentation describing the necessary func-
tional and physical characteristics and those designated for
production acceptance testing. [Berlack 92] In addition,
several informal baselines are usually established during the
software development process. The number and type of
baselines depend on which lifecycle model the project is
implementing. Lifecycle models, such as the spiral, incre-
mental development, and rapid prototyping, require more
flexibility in the establishment of baselines. For a detailed
explanation of lifecycle models, see Wicked Problems, Righ-
teous Solutions by Peter DeGrace and Leslie Houlet Stahl.
Also see, “A Comparison of Software Development Meth-
odologies,” in the January 1995 issue of CrossTalk: The Jour-
nal of Defense Software Engineering.

3.1.3 Configuration Status Accounting
13

Configuration status accounting involves the recording and
reporting of the change process. The goal of status account-
ing is to maintain “a continuous record of the status and
history of all baselined items and proposed changes to them.
It includes reports of the traceability of all changes to the
baseline throughout the software lifecycle.” [Kasse 97]. Con-
figuration status accounting answers What changes have been
made to the system? and How many files were affected by this
problem report?

Configuration status accounting activities include
· Determining type of logs and reports required.
· Tracking the status of SCM items.
· Tracking the status of changes to the system.
· Generating status reports.
· Recording and reporting the activities of SCM.

“Status accounting provides visibility into the system evo-
lution by recording and reporting the status of all items and
the status of all requests for change. Questions that SCM
status accounting should be able to answer include
· What is the status of an item? A developer may want to

know whether a specification has been fully approved. A
developer may want to know whether a subsystem has
been tested so that the developer can test the modules
that interface with that subsystem. A project leader may
wish to track the progress of a project as items are devel-
oped, reviewed, tested, and integrated.

· Has a change request been approved or rejected by the
SCCB?

· Which version of an item implements an approved
change request? Once a requested enhancement of a
library routine is implemented, the originator and other
developers will want to know which version of the rou-
tine contains the enhancement.

· What is different about a new version of a system? A
new version of a software system should be accompa-
nied by a document listing the changes from the previ-
ous version. The change list should include both en-
hancements and fixes to faults. Any faults that have not
been fixed should also be named and described.
14
· How many faults are detected each month, and how
many are fixed? Faults are continuously detected during
the operational use of the system. Comparing the num-
ber of detected and fixed faults helps to assess the stabil-
ity of the latest release of the system. Tracking the num-
ber of faults also helps the program manager decide when
to make a new release of the system.

· What is the cause of the trouble report? Trouble reports
can be categorized by their causes: violation of program-
ming standards, inadequate user interface, or invalid,
incorrect or incomplete customer requirements. Some-
times when it is discovered that many faults have a simi-
lar cause, action can be taken to improve the process and
stop such faults from recurring.” [Kasse 97]

Key information about the project and configuration items
can be communicated to project members through status
accounting. Software engineers can see what fixes or files
were included in which baseline. Project managers can track
completion of problem reports and various other mainte-
nance activities. Minimal reports to be completed include
transaction log, change log, and item “delta” report. Other
typically common reports include resource usage, “stock sta-
tus” (status of all configuration items), changes in process,
and deviations agreed upon [Ben-Menachem 94].

3.1.4 Configuration Auditing
Configuration auditing verifies that the software product is
built according to the requirements, standards, or contrac-
tual agreement. Test reports and documentation are used to
verify that the software meets the stated requirements. The
goal of configuration audit is to verify that all software prod-
ucts have been produced, correctly identified and described,
and that all change requests have been resolved according to
established SCM processes and procedures. Informal au-
dits are conducted at key phases of the software lifecycle.
There are two types of formal audits that are conducted
before the software is delivered to the customer: Functional
Configuration Audit (FCA) and Physical Configuration
Software Technology Support Center

Audit (PCA). FCA verifies that the software satisfies the
software requirements stated in the System Requirements
Specification and the Interface Requirements Specification.
In other words, the FCA allows you to validate the system
against the requirements. PCA determines whether the
design and reference documents represent the software that
was built. Configuration audit answers Does the system sat-
isfy the requirements? and Are all changes incorporated in this
version?

Configuration audit activities include
· Defining audit schedule and procedures.
· Identifying who will perform the audits.
· Performing audits on the established baselines.
· Generating audit reports.

3.1.5 Establishing a Software Baseline Library
In support of the above activities, a software baseline li-
brary is established. The library is the heart of the SCM
system. It serves as the repository for the work products
created during the software lifecycle. Changes to baselines,
and the release of software products, are systematically con-
trolled via the change control and configuration auditing
functions. The software library
· Supports multiple control levels of SCM.
· Provides for the storage and retrieval of configuration

items or units.
· Provides for the sharing and transfer of configuration

items or units between control levels within the library.
· Provides for the storage and recovery of archive ver-

sions of configuration items or units.
Figure 4. Key Steps in Implementing SCM.

Software Configuration Management Technologies and Applications
· Helps to ensure correct creation of products from the
software baseline library.

· Provides storage, update, and retrieval of SCM records.
· Supports production of SCM reports.
· Provides for maintenance of library structure [Olson 93].

In the past, libraries have been composed of documen-
tation on hard copy and software on machine-readable
media. Today, with the advances in information technology
and standards that encourage contractors to use automated
processing and electronic submittal techniques, organiza-
tions are moving toward maintaining all information on
machine-readable media.

3.2 Implementing SCM in the Organization
Organizations which have never practiced SCM may find
themselves in the unenviable position of needing to begin
an SCM program, with no idea where to begin such an
effort. The foundation of an SCM program can be set with
six building blocks (see Figure 4.):
1. Establish adequate sponsorship
2. Assess current processes
3. Analyze organizational requirements
4. Establish roles and create an SCM team
5. Manage the risks of SCM, and
6. Document the SCM process.

Once these building blocks are in place, results will be seen.
These basic principles help to foster the implementation of
15

a functional and non-instrusive SCM program which will
satisfy the needs of management, CM practitioners, design
engineers, software engineers, and test engineers, alike.

3.2.1 Establish Adequate Sponsorship
One of the first steps to successfully implement SCM is to
obtain management sponsorship. This means public endorse-
ment for SCM and resources needed for success are allo-
cated to the project. Management also needs to establish SCM
as a priority and help to facilitate implementation. If man-
agement is not willing to “walk the walk,” getting the rest of
an organization to “walk the walk” will be difficult.

An organization can maintain management sponsorship
by identifying and resolving risks, reporting progress, man-
aging SCM implementation details, and communicating
with all members of the organization.

3.2.2 Assess Current Processes
The next step is to assess current SCM processes. Every
organization that produces software is practicing some
sort of SCM. This may not be a formal process or even
thought of as SCM. To assess current processes, ques-
tions such as the following may be asked: How are files
identified? How are versions of software releases identi-
fied? How are baselines controlled? What files are in-
cluded in each release? How are changes to the software
identified and tracked? et cetera.

The SCM Key Process Area in the Software Engineer-
ing Institute Capability Maturity Model provides structure
to evaluate your current processes. It can be very useful in
accessing current processes and is a good place to begin.

3.2.3 Analyze Requirements
After assessing your current processes, the next step is to
analyze your requirements. What is it that your organiza-
tion wants to accomplish? The requirement may be a spe-
cific level SW-CMM certification, ISO 900 certification,
some other standard or certification or simply to improve
your software process. Document the requirements for your
16
organization, how you will implement them, and how you
will measure success.

3.2.4 Establish Roles and Create an SCM Team
Depending on the requirements for your organization, the
various roles and formality of the SCM team may differ. At
a minimum there should be a point-of-contact for SCM.
The following roles may also be considered.
· Control and review board to analyze and approve changes.
· Software Engineering Process Group (necessary for SW-

CMM Level 2 certification) to define processes and prac-
tices and facilitate process improvement.

· Project managers and leaders also play a role in SCM in
establishing or following SCM plan for their project, en-
suring system requirements are properly allocated, en-
suring adequate tools are available to support activities
and conducting regular reviews.

· A librarian is also necessary to track baselines and ver-
sions of files included in each release. An SCM tool may
assist in those activities.

· Quality Assurance (QA) may be used to verify docu-
mented SCM processes and procedures are followed. QA
is also necessary for SW-CMM Level 2 certification.

· Other roles and SCM team members may be identified
as required by your organization’s SCM.

3.2.5 Manage the Risks of SCM
With each new software project or process, there is some
amount of risk associated with it. The same is true when
implementing SCM. Whether an organization is implement-
ing a whole new system or just updating a few processes,
there will be risks that need to be addressed. Note that hav-
ing risk is not bad—on the contrary, risk is a necessary
part of the SCM and the software development process.
Without risk, there is no opportunity for improvement.
Risk-free SCM processes are typically of little use.

The very nature of SCM requires risk-taking. Manag-
ing and controlling the risks associated with SCM is essen-
tial to the success of SCM processes in terms of cost, sched-
ule, and quality. “Risk management costs time and money.
Software Technology Support Center

However, it is always less expensive to be aware of and deal
with risks than to respond to unexpected problems. A risk
that has been analyzed and resolved ahead of time is much
easier to deal with than one that surfaces unexpectedly.”
[Guidelines 96]

The Software Engineering Institute has developed a risk
management program comprising six different activities with
communication being central to all of them. This program
may be used when implementing SCM to effectively man-
age the associated risks. Risk management should be viewed
as an important part of the SCM process. A brief summary
of each activity follows.
· Identify. Before risks can be managed, they must be

identified. Identification surfaces risks before they be-
come problems and adversely affect a project.

· Analyze. Analysis is the conversion of risk data into risk
decision-making information.

· Plan. Planning turns risk information into decisions and
actions (both present and future). Planning involves devel-
oping actions to address individual risk, prioritizing risk
actions, and creating an integrated risk management plan.

· Track. Tracking consists of monitoring the status of risks
and actions taken to ameliorate risks.

· Control. Risk control corrects for deviations from
planned risk actions.

· Communicate. Risk communication lies at the center
of the model to emphasize both its pervasiveness and its
criticality. Without effective communication, no risk
management approach can be viable. [Paulk 93]

As part of an organization’s risk management program, a
plan should be developed that integrates the above outlined
activities. An SCM risk management plan may focus on
addressing risks in three areas: business, people and technol-
ogy. [Burrows 96] The business risks include:
· Cost. The expense to incorporate SCM encompasses

far more than just the licensing fee for a tool. Manage-
ment must be willing to make the necessary expendi-
tures for people and resources.
Software Configuration Management Technologies and Applications
· Culture shock. Each organization has its own culture
to which the success of the business can be attributed.
The procedures and products implemented for SCM
must match that culture. The person in charge of SCM
needs a broad understanding of software engineering
principles and the cultural aspects of the organization.

· Commitment. In order to establish a successful SCM
process, there must first be a strong commitment from
management. The benefits of SCM are not always im-
mediately recognized. “Deploying CM can be a long,
costly, and sometimes painful exercise. Counter this risk
by building up steam in the project. Get momentum
going quickly and keep feeding it.” [Burrows 96]

The risks associated with people include:
· Cheating. Software developers may try to incorporate

their code into the final product without following pro-
cedures and resist any changes to the established proce-
dures.

· Preferred tools. They may have a tool they want to use
that is different from the organization’s. To mitigate these
risks, try to get offenders to be part of the decision-mak-
ing process. Let them have input to the procedures and
tools that will be used.

· Resistance. The greatest barrier to overcome when SCM
is introduced into an organization is to change how people
view SCM. People generally react negatively toward it.
In many organizations, SCM has a low status, and SCM
personnel are not trained or qualified to perform their
duties. Many software developers perceive SCM as in-
trusive and have little understanding of the long-term
effect of not following SCM procedures. Communica-
tion, training, and developer input to SCM processes will
help ensure SCM principles are adopted by an organi-
zation. [Burrows 96]

The last area is technology. The technology risks include:
· Loss of control. At times, it may seem that the SCM

procedures and tools are at the controls. There may also
be reliance on tools where previously the needed data
17

and information were obtained manually. Again com-
munication will help to mitigate this risk. Management
will have greater control over and information about
their projects after successfully implementing SCM.

· Access. Controlling who may have access and make
changes to various baselines, data repositories, software
files or documents is also a risk to be managed. By thor-
ough analysis and design, the procedures implemented
may restrict access to approved individuals and give up-
to-date information on many aspects of the project that
is current and accurate.

· Scalability. A project has the potential to outgrow the
implemented tool. Counter this risk by selecting a tool
that will adapt to the changing size of your organization
over time [Burrows 96].

The secret to SCM risk management is to identify and re-
solve potential risks before they surface unexpectedly or be-
come serious problems. Develop a program for identifying
and managing risks. Incorporate an SCM risk management
plan that addresses risks to business, people, and technol-
ogy. Central to everything is communication. Communi-
cate as much as possible to as many people and organiza-
tions as possible.

3.2.6 Document the SCM Processes
The SCM requirements identified for your organization
will determine the level or degree of documentation
needed. Standards or requirements for certification specify
what needs to be documented. The assessment performed
of your current processes may be included in this step.
There are various methods that may be used for docu-
mentation from flow charts and diagrams to detailed ex-
planations of each process.

3.3 Writing the Formal SCM Plan
Previous sections of this report describe the elements of
SCM or what is included in an SCM process. How those
elements are implemented is through a Software Configu-
ration Management Plan. Most organizations follow a policy
stating SCM will be done. Detailed procedures outlined in
18
the SCM plan show how the processes mandated by the
policy will be carried out. The SW-CMM makes reference
to procedures that should be created in order to comply
with policies.

The SCM plan specifies what and how SCM shall be
done. “While the SCM plan itself is not difficult to write, it
is critical to the entire SCM process. The plan provides the
focus for the process and procedures, and is the mecha-
nism used to communicate the SCM process to the other
organizational groups on the project.” [Bounds 96]

The SCM plan identifies
· SCM activities over the software lifecycle.
· SCM organization.
· SCM responsibilities and authority.
· Resources needed to perform SCM functions.
· Interfaces to other organizations.
· SCM roles, policies, and procedures.
· The change control process.
· Level of SCM control.
· Library requirements and activities.
· Members of the Configuration Control Board (CCB).

Reviewing available standards, sample SCM plans, and
books will provide the necessary guidance in developing an
SCM plan. Standards provide the framework to begin de-
veloping an SCM plan. Standards address the key issues that
need to be included in the plan. In addition, standards for
the development of the SCM process should also be refer-
enced for further guidance in developing an SCM plan
[Bounds 96]. For a list of the standards, see Section 3.5.

Sample SCM plans are contained in some of the stan-
dards. Various organizations and companies have also pub-
lished SCM plans that can be used as a model. Books avail-
able on SCM plans are included in Appendices A and G.

The most difficult part in preparing an SCM plan is
defining the process and writing the procedures. Defining
the process entails determining how the elements of SCM
will be implemented. For instance, “how will you actually
perform change control, what configuration identification
scheme will you use, who will need status accounting re-
Software Technology Support Center

ports, and what will need to be in each report produced”
[Bounds 96]. These are just some of the questions that need
to be answered to determine how you will perform SCM
on the project.

Once the SCM process is defined, the next step is to write
the procedures to invoke this process. One approach to de-
velop your procedures is to document the steps to be ex-
ecuted, then perform the procedure using only the docu-
mented steps. This process, documentation and execution,
is usually iterated several times to develop a well-defined
procedure.

Typically, the procedures are separate from the plan.
However, the SCM plan should reference the procedures.
“The procedures should describe, step by step, how to do
something, whereas the plan should describe what is to be
done” [Bounds 96].

The SCM plan is an integral part of a project. The Ca-
pability Maturity Model Level 2 Software Configuration
Management key process area [see Paulk 95] states that
· The SCM plan is developed in the early stages of and in

parallel with the overall project planning.
· The SCM plan is reviewed by the affected groups.

The SCM plan plays a critical role in the success of a
project. Therefore, it warrants attention in the early phases
of project development. The relative size and complexity of
the project do not substantially affect the SCM plan. In a
recent study of SCM plans, “no significant differences were
noted between a CM plan for a development project versus
a maintenance project, a CM plan written for hardware ver-
sus software, or a CM plan written for a large project versus
a small project.

In general, the same CM plan structure can be used for
all of these types of project, with minor adjustments. It was
also noted that the majority of differences between the vari-
ous types of projects exist at the procedure level” [Bounds
96]. Appendix A contains references for sample plans, tem-
plates, and checklists used in SCM.
Software Configuration Management Technologies and Applications
3.4 Automating Software Configuration
Management
Automating software configuration management consists
of all the steps involved in introducing an SCM tool into an
organization and ensuring that it is routinely used on all
projects. Implementing an automated SCM system is a com-
plex process. It affects all levels of the organization; there-
fore, an in-depth evaluation of the organization is required
to determine how the processes and people will be affected.
Failure to understand the issues involved in the automation
of SCM technology is the main reason why organizations do
not successfully deploy the SCM tool. A defined strategy
that addresses these complex issues becomes a necessity.

Before beginning the automation effort, organizations
must consider complex technical issues that may affect the
effort. These issues include
· The size and intricacy of the software system.
· Migration to client-server computing.
· Heterogeneous hardware and software platforms.
· Tool integration.
· Legacy systems.
· Interfaces to external systems.

Many organizations thought that purchasing an SCM tool
would solve their problems, but soon discovered that there
was no “silver bullet” SCM tool. To attempt to automate an
immature SCM process will not raise an organization’s level
of maturity as defined by the SW-CMM. In all likelihood,
such attempts would only further amplify any process short-
comings and inadequacies. “Automating a money losing pro-
cess allows you to lose more money faster and with greater
accuracy.” [Ventimiglia 97] A tool alone will not solve an
organization’s SCM problems. Choosing the right tool to
satisfy an organization’s SCM requirements will in itself fail
if other issues are not addressed. To ensure an effective SCM
solution, an organization must address the complexities that
it faces when implementing a change. “These complexities
include
· Technical. These issues relate to how the tool operates,

how it will be installed to maximize performance and
19

Figure 4. Key Phases to Automate SCM.
how it will be customized. For example, how the tool
will be installed over the company’s network in the cli-
ent-server architecture given the different platforms and
how can it be used to suit the parallel development ac-
tivities of the various teams.

· Managerial. These issues relate to the necessary plan-
ning, monitoring, setting of priorities, making of sched-
ules, and resource management. For example, who will
be allocated to fulfill the automation activities, how will
the product schedules be affected, and who will imple-
ment the tool first?

· Process Related. These issues relate to the way the com-
pany does its business. For example, what is the current
flow throughout the company and how do the develop-
ers, testers, QA personnel, build managers, document
writers, etc., work together to ensure this flow?

· Organizational. These issues relate to the infrastructure
in the company. For example, how will the tool affect
the responsibilities of each department and their inter-
communication?

· Cultural. These issues relate to the way people operate
and achieve their goals. For example, what kind of cul-
ture exists at the company, and what is the best way to
invoke change in that culture?

· Political. These issues relate to “who is stepping on whose
toes.” For example, how will the organizational bound-
aries change, who will be responsible for what, and how
will people be rewarded based on making the change?

· People Related. These issues relate to people’s comfort
level. For example, how will resistance be managed, and
will people lose their job because of this tool? This com-
plexity is closely tied to the cultural.

· Risk Related. These issues relate to unknown informa-
tion and tricky problems. For example, how will the ef-
fect of making concurrent changes, such as a new operat-
ing system and new hardware, as well as reengineering
the legacy code, impact the new SCM system?” [Dart 94]

The SCM automation effort must be treated as a project
with realistic goals and a defined schedule. SCM automa-
20
tion can be successfully carried out using the phases listed
below developed by Susan Dart, a former member of the
environment team at the Software Engineering Institute
(SEI). The phases provide structured guidance, identify
tasks, and address the complexities involved with automat-
ing SCM. Key activities are carried out during each phase
of the implementation. At all phases, it is important to
reinforce management’s commitment to the automation
effort and to provide training. The phases are as follows
(see Figure 4):
Phase 1: Preparation and Planning
Phase 2: Process Definition
Phase 3: Tool Evaluation
Phase 4: Pilot Project Implementation
Phase 5: Rollout to Other Projects
Phase 6: Capture and Communicate Improvements

3.4.1 Phase 1: Preparation and Planning
This is the stage most organizations fail to perform, thereby
resulting in the unsuccessful automation of SCM. The pur-
pose of this phase is to plan for the automation activities,
to establish management support, and to assess the status
of current SCM activities.
Software Technology Support Center

First, an SCM automation team is created. The auto-
mation team is responsible for implementing the automa-
tion strategy and plays an important role in the implemen-
tation effort. The team monitors and participates in all
phases of the automation effort. Members of the automa-
tion team typically include
· A leader who is responsible for the automation effort.
· A sponsor who has the authority to empower the team

and provide the support required to tackle difficult SCM
problems.

· A champion or technical expert who understands the
technology.

· Representatives from the user community.

The automation team begins by developing the SCM
automation plan. The plan details the benefits of SCM, out-
lines the automation schedule and resources required, de-
fines the policies and procedures involved in the automa-
tion effort, establishes success criteria, and establishes roles
of the automation team.

Next, the requirements are defined and prioritized. Devel-
oping a clear understanding of the organization’s strategic goals
is required to evaluate the SCM requirements. The evaluation
of SCM requirements should not be conducted in a vacuum.
All members of the organization who will be affected by SCM
must be surveyed to identify their SCM requirements and to
determine their roles in the SCM process. Careful attention
must be paid to the training requirements of all people af-
fected by the SCM tool, process, and procedures.

In addition, all levels of management must be aware of
the benefits of SCM. Many times this involves showing fi-
nancial and scheduling benefits, i.e., increase in program-
mer productivity by automating SCM tasks.

Next, an inventory of present hardware and software
platforms is conducted and future hardware and software
platforms identified. And, lastly, a risk management plan is
developed. This plan identifies risks that could affect the
outcome of the automation effort. The automation team is
responsible for identifying and addressing risks throughout
the project.
Software Configuration Management Technologies and Applications
3.4.2 Phase 2: Process Definition
The goals of this phase are to define the current SCM process,
evaluate the process, and define a new, improved process if
required. The process is then analyzed to identify which areas
would benefit from automation. A defined software change
process is pertinent to the successful implementation of SCM.
Without a defined process, the organization will make little
progress in the adoption. A variety of methods exists to define
the process. Additional information on process definition can
be obtained from SEI, IEEE, or the Software Technology Sup-
port Center. During this phase, process related requirements
will be identified. These should be added to the requirements
developed in phase 1 as appropriate.

3.4.3 Phase 3: Tool Evaluation
This phase consists of matching the organization’s require-
ment to SCM tools. Before the evaluation begins, tool re-
quirements identified in phase one are refined and priori-
tized. The evaluation method is chosen, and test scenarios
required to test the capabilities of the tools are developed. It
is important to include representatives from all users’ groups
in the evaluation to gain a better understanding of how dif-
ferent groups will use the tool. Results of a study conducted
by the Gartner Group determined that the cost of the soft-
ware tool represents only 10 percent of the total cost of imple-
menting a solution. Lost productivity accounts for 50 per-
cent and the remaining 40 percent of the solution is derived
from the cost of manpower [Softool 92].

Many tool vendors are expanding the functionality of
their tools to meet the requirements of today’s software de-
velopment organizations. Several companies sell their prod-
ucts as a series of components. For example, the case prod-
uct handles version control and process control, whereas
the problem reporting function may be purchased sepa-
rately.

State-of-the-art SCM tools may contain the following
features:
· Version control.
· Configuration support.
· Process support.
21

· Change control.
· Team support.
· Library and repository support.
· Security and protection.
· Reporting and query.
· Tool integration.
· Build support.
· Release management.
· Customization support.
· Graphical user interfaces.
· Distributed development.
· Client-server development support.
· Web support.
· Year 2000 support.

The SCM process should first be defined before tool
selection. The tool should implement or automate the de-
fined processes. The tool alone should not be used to de-
fine a project’s SCM process or procedures.

The tool summary in Appendix B, along with the refer-
ences, provide a starting point for those responsible for se-
lecting an SCM tool. It may take as long as six months to
completely understand the functionality of an SCM tool.

3.4.4 Phase 4: Pilot Project Implementation
The purpose of this phase is to determine how well the
SCM tool, processes, and procedures satisfy the
organization’s requirements. A pilot project allows testing
of the tool’s functionality on a real project with real data. In
addition, the pilot allows for the prototyping of processes
and procedures and provides feedback on how users re-
spond to the tool.

It is important to select a pilot that will address all areas
of SCM but not affect the project’s critical path. The auto-
mation team develops standards, policies, and procedures as
well as ensures users are trained to perform their SCM
duties. Successes and failures are documented and com-
pared to the success criteria identified in the automation
plan.
22
3.4.5 Phase 5: Rollout to Other Projects
This phase involves incremental migration of the tool into
other projects. Training and dealing with resistance to change
are key activities of this phase. The SCM tool, process, pro-
cedures, and training needs are examined and adapted for
each project. The automation team implements, evaluates,
and monitors rollout activities. This stage is complete when
the SCM is routinely used on all projects.

3.4.6 Phase 6: Capture and Communicate
Improvements
This phase involves evaluation of automation activities, cap-
turing strategies that worked, and making recommenda-
tions for process improvements. The use of measurements
and metrics can be very beneficial during this phase.

More details on SCM automation can be found in
“Adopting an Automated Configuration Management So-
lution,” by Susan Dart in Proceedings of the Software Tech-
nology Conference, April 1994.

3.5 SCM Standards
Some of us cringe at the mention of standards; yet, they
persist. Why? Because as the software development commu-
nity strives to become an engineering discipline, the useful-
ness of standards is recognized.

Standards provide a framework on which acquirer and
developer can build a mutual understanding of the acquirer’s
requirements and of the developer’s process.

The table below lists standards and guides that distill
years of government and industry experience applicable to
organizations that acquire and develop software. Here we
have identified some standards that either specifically cover
SCM or that cover more general processes that include
SCM. Listed are standards specific to SCM as well as hard-
ware configuration management. The standards vary in the
breadth and depth of coverage they provide. Scan the
“Scope” columns of Table 2 to determine which of the stan-
dards listed are specific to SCM, which include general
SCM and which merely touch on SCM within the context
of broader processes.
Software Technology Support Center

Copies of the IEEE/EIA Standards can be purchased
from the Institute of Electrical and Electronics Engineers,
Inc., IEEE Service Center, 445 Hoes Lane, P.O. Box 1331,
Piscataway, NJ 08855-1331. Copies may also be purchased
from Global Engineering at 800-854-7179. MIL-HDBK-
61 is available electronically at http://www.acq.osd.
Table 2. Some Standards Related to SCM.

Key: Software CM = Hardward CM = HCMSCM

EIA Standard IS-649 National Consensus Std for
Configuration Management, Aug. 1995

IEEE Std 1042-1987, Guide to Software Configura-
tion Management (ANSI)

IEEE Std 828-1990, Standard for Software
Configuration Management Plans (ANSI)

IEEE/EIA 12207.0-1996, Industry Implementation of
International Standard ISO/IEC 12207:1995 (ISO/IEC
12207) Standard for Information Technology -
Software Lifecycle Processes, Mar 1998

IEEE/EIA 12207.1-1996, Lifecycle data, April 1998

IEEE/EIA 12207.2-1996, Implementation
Considerations, April 1998

ISO 9000-3:1991 (E), Quality Mgmt & Quality Assurance
Stds-Part 3: Guidelines for the application of ISO 9001 to
the development, supply and maintenance of software

J-STD-016-1995

MIL-HDBK-61, Configuration Management
Guidance

MIL-STD-2549, Configuration Management Data
Interface

Prov
con

Des
Inclu

Esta
to e

Esta
Con
stan
main

Prov
IEEE

Prov
sum
ISO/

Sets
mai
dem

Defi
fram
STD

Prov
indiv
CM

Deta
Defi
info
rule

Standards & Guides Scope
Acquisition

Process
Supply/Dev

Process
Data

SW

HCMSCM

SCM

SCM

SCM

SW

SCM

SW

SCM

SW

SCM

SW

SCM

SW

SCM

SW

SCM

SW

SCM

SW

SCM

Yes

Software Configuration Management Technologies and Applications
Military and federal specifications and standards are
available free of charge from the Defense Automated Print-
ing Service, Building 4/D, 700 Robbins Avenue, Philadel-
phia, PA 19111-5094; Voice: 215-697-2179, DSN: 442-
2179, Fax: 215-697-1462.
 Software = Hardware = HWSW

ides basic CM principles and best practices employed by industry to identify product
figuration and effect orderly management of hardware and software product change.

cribes the application of CM disciplines to the management of software engineering projects.
des four complete examples of SCM Plans.

blishes minimum required contents of an SCM Plan. Supplemented by IEEE Std 1042-1987. Applies
ntire life cycle of critical software; also applies to noncritical and already developed software.

blishes a common framework for software lifecycle processes with well-defined terminology.
tains processes, activities, and tasks to be applied during acquisition of a system containing software,
d-alone software product, and software service and during the supply, development, operation, and
tenance of software products. Software includes the software portion of firmware.

ides guidance on what data might be recorded in the execution of the activities and tasks of
/EIA 12207.0-1996. Doesn’t dictate content, location, format or media.

ides guidance in implementing the process requirements of IEEE/EIA 12207.0. Intended to
marize the best practices of the software industry in context of process structure provided by
IEC 12207.

 out guidelines to facilitate application of ISO 9001 to organizations that develop, supply and
ntain software. Intended to provide guidance where a contract between two parties requires
onstration of a supplier’s capability to develop, supply and maintain software products.

nes a set of software development activities and resulting software products. Provides a
ework for software development planning and engineering. As the commercial version of MIL-
-498, it merges the commercial and Government software development requirements.

ides guidance and information to DoD acquisition managers, logistics managers, and other
iduals assigned responsibility for CM. Assists in planning for and implementing effective DoD
activities and practices during all life cycle phases of defense systems and configuration items.

ils the Gov’t interface requirements for the exchange of CM information in CM databases.
nes the logical content and relationships of the information that should exist as the
rmation transfers from one activity (and management tool) to another, that is, the business
s view.

Description

6 0

9 0

15

75

3 0

100

15

22 0

200

500

Pa
ge

s

23

4Software Configuration Management
Case Studies and Lessons Learned
4.1 Case Studies
The following case studies outline specific instances where
organizations successfully implemented SCM.

4.1.1 Selecting an SCM Tool
In 1988, at a large aerospace corporation in the South-

east, the SCM Manager turned in a recommendation to
purchase an SCM automated tool that would satisfy all re-
quirements identified by the SCM groups. Management
delayed acting on the recommendation in order to give the
other engineering departments time to review the recom-
mended tool.

In the end, the recommendation to purchase the tool
was cancelled. It was felt that while the tool did support the
SCM organization, it did not adequately address other de-
velopmental considerations that the engineering ranks felt
were important. Sometime later, a different tool was pur-
chased, one that satisfied all the major requirements of SCM,
the software developers, SQA, Test, Integration and man-
agement organizations.

4.1.2 Overcoming Barriers to SCM
During a recent visit to a private sector corporation (i.e.,
they did not deal with government contracts) in New En-
gland, it was discovered that the developer’s major concern
about implementing SCM activities was “all the restrictions”
they would have to deal with. They had been led to believe
that SCM meant formal controls, restricted access, limited
ability to apply creative solutions, and so on. When it was
suggested that data can transition to formally controlled
24
baselines through a series of informal control steps, and
that SCM did not mean a lock down and bottleneck, they
became eager to be involved. After a number of meetings,
a phased approach to formal SCM allowed for the place-
ment of informal controls and data gathering which led to
baselined items. Everyone was pleased with the process.

The developers soon realized they could work together
with SCM as a team to solve problems rather than as two
separate organizations with their own concerns and desired
solutions. More importantly, perhaps, the SCM group
learned that when they got out of their corner office and out
onto the engineering floor (being support and service ori-
ented) they quickly became an integral part of the engineer-
ing and development process and team.

4.1.3 Implementing SCM with an Electronic
Database
A team of 35 to 40 developers was developing six Com-
puter Software Configuration Items (CSCI’s) which all had
two or more customer variants as well as maintenance vari-
ants. The operating system was Unix, and the development
languages were Ada, C, and C++. Implementing a classical
SCM environment in this type of environment would nor-
mally require three to four SCM practitioners to handle all
the code and document manipulations. The team chose
instead to implement a mostly developer-executed SCM
system called Effective SCM. They implemented a Software
Query Language (SQL) compliant, database driven, pro-
Software Technology Support Center

cess-oriented SCM system, which supports a rule-based,
closed-loop, change-package approach to development.

Daily interaction with the SCM system by the devel-
opers provided 100% tracking and status accounting of
everything that happened to any file in the systems with-
out the need for intrusion or interference by SCM practi-
tioners. The SCM practitioners maintained the process
model and performed the configured builds. As a result,
SCM support to this team was less than one person and
in fact is in the order of 80-120 hours per month instead
of the over 400 hours per month that a classical approach
would have used.

The electronic database created by the engineers com-
pletely documented the execution of their software devel-
opment plan. It also tracks the history of every file used in
the system including change documents, baselines and re-
leases for each file. Note: Rule-based, closed-loop change
control electronically implements business rules which pre-
vent creation of a new version without authorization, and
prevents closure of a change request that hasn’t been imple-
mented. A change package approach supports electronic
creation of new baselines by application of changes to a
previous baseline. The tool electronically adds, replaces, or
removes files that are related to the list of changes being
made and is very effective in tracking development activi-
ties.

(Note that “Effective SCM” is an unregistered trade-
mark of BOBEV Consulting. For a complete description,
see “Effective Software Configuration Management”
Crosstalk, The Defense Journal of Software Engineering, Feb-
ruary 1998.)

4.1.4 Obtaining SEI SW-CMM Level 2
Certification
A government organization had been told to reach the SEI
SW-CMM Level 2 in 18 months or lose their workload to a
contractor. The organization employed an experienced tech-
nology transition concern to assist them in reaching Level 2.

Eleven months prior to the SW-CMM assessment the
technology transition concern focused on implementing
Software Configuration Management Technologies and Applications
SCM. The approach used was to interview analysts, pro-
grammers, and CM specialists and SEPG members to un-
derstand the current process. The transition concern met
with SEPG members to document the process and to de-
sign procedures where procedural holes were identified. A
semi-automatic process existed for controlling the software.
It was decided that all other aspects of the SCM process
would be implemented manually to meet the assessment
deadline. If the organization survived the assessment, au-
tomation implementation of SCM would proceed.

Because the organization had made previous attempts
to establish a more complete SCM process, there was some
sceptism about the organization’s chances to implement
SCM. But the workforce was generally very motivated by
the fact that their jobs were at risk.

Like most case studies, this has a happy ending. The
organization reached Level 2 and demonstrated significant
progress toward Level 3. SCM was the most difficult of the
Level 2 Key Process Areas to implement. Obstacles were
overcome because: (1) SEPG members played the major
role in developing the SCM procedures, rolling out the
process, and in auditing the process and the SCM artifacts,
and (2) the SEPG was able to effectively leverage off the
experience of the technology transition concern.

4.2 Lessons Learned
The following are just a sample of the many lessons that
have been learned from apply SCM and its associated tech-
nologies. If any additional information is desired, please con-
tact the authors list at the beginning of this report.

4.2.1 The Importance of Planning
With only a few exceptions, if you look at any of the SCM
standards, manuals, guides, books, etc., you will likely find
that SCM has four major functions: (1) identification, (2)
change control, (3) status accounting, and (4) audits and
verifications. In nearly every case, planning is left out. Yet,
SCM is using much more complex equipment to establish
and maintain complex environments, multiple baselines,
multiple environments on multiple platforms, etc. Like ev-
25

eryone else, SCM has to do all that faster, cheaper, smarter,
and better than before. Planning has become more impor-
tant than ever.

As recently as 10 years ago, there was still some truth to
the statement: “Have them do SCM, someone has to do it
and anyone can learn it quickly enough.” That is not really
true any longer. The job has become too technical, too
complex, and dependent on many different variables to make
it an, “easy job that anyone can pick up.”

It is true that SCM still relies fairly heavily on on-the-
job training (OJT). There are no universities or colleges
that offer a four-year program in SCM. However, the evolv-
ing complexity of the job has been recognized in academia.
There are now some two-year community colleges that of-
fer SCM certification programs. Even more surprising,
during 1998 one of the authors personally worked with
three people who are pursuing doctorate degrees and are
centering their respective theses on SCM and its functions.

If this is all true, then “planning” cannot be interpreted
as meaning “An SCM Plan has been written.” That is cer-
tainly a good start, but much more is needed than just a
document that explains SCM’s roles and responsibilities.
SCM planning activities must also include such things as, to
name only a few:

· Metrics. How long, how many, when and where.
· Skill Mix. What is needed and who has it or who can

get it.
· Infrastructure. Who is doing what, where, when, how.
· Contingencies. If this happens, then what.
· Effort Tracking. Manpower levels, roll on and roll off.
· Subcontracts. Responsibility and authority.
26
· Resources. Budget, tool licenses, training, headcount.
· Matrix Management. Decentralized workforce.
· Control Transitions. Informal to formal to field.
· Records Retention. What gets kept, where, for how

long.
· Control. Who controls what and how do they do it.
· Process. Standardized procedures for repeatability.

4.2.2 Things to Remember
The most significant lessons are:
· Get an inside person on your side—an internal cham-

pion. They will become an evangelist for your solution
to their co-workers.

· Get management buy-in and sponsorship. Manage-
ment must really want it, not just go along with it. All
levels of management need to support SCM. While
implementing SCM, keep a focus on management
sponsorship at all times.

· Maintain a sense of humor.
· Be flexible and sensitive to “corporate culture.”
· Seek out the early success.
· Don’t use critical project as pilot.
· Use a systems approach; for example, where am I,

where do I want to go, how am I going to get there?
· Success is more likely with lots of preparation, focus

and SCM and developer needs, breadth of participa-
tion, on-line access to sample process and planning
templates, and standard terminology.

· Keep it simple. If it is too complex, or gets in the
way, it will not get used.

· Communicate, communicate, and communicate.
Software Technology Support Center

Availability of Templates, Forms,
and Checklists A

Appendix
The following are excellent resources for implementing
SCM. Each contains explanations of key SCM concepts.
The first three also contain templates, forms and checklists
that are commonly used in implementing SCM.

The fourth is an excellent reference for SCM plans and
contains a sample plan. The last is an explanation of the SEI
SW-CMM.

1. Ben-Menachem, Mordechai, Software Configuration
Management Guidebook, McGraw-Hill, Inc., 1994. This
book contains sample SCM plans and checklists.

2.Berlack, Ronald H., Software Configuration Manage-
ment, John Wiley & Sons, New York, 1992. This book
contains sample SCM plan outlines, forms, checklists
and charts.
Software Configuration Management Technologies and Applications
3.MIL-HDBK-61, Military Handbook: Configuration
Management Guidance, Department of Defense, Sept.
30, 1997. This standard contains sample SCM plans,
forms and checklists.

4.Bounds, Nadine M. and Susan A. Dart, Configuration
Management Plans: The Beginning to Your CM Solution,
Software Engineering Institute, Carnegie Mellon Univer-
sity, February 1996.

5.Paulk, Mark C., Charles V. Weber, Bill Curtis, and Mary
Beth Chrissis, The Capability maturity Model: Guide-
lines for Improving the Software Process, Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh,
Pa., October 1995. This book outlines the SEI SW-CMM
and lists and key process areas for each SW-CMM level.
27

Configuration Management
Tool Summary B

Appendix
The following summarized CM tool information is taken from
Ovum Evaluates: Configuration Management by Clive Burrows
and Ian Wesley published July 1998. It is provided as a courtesy
from and with the permission of Ovum Ltd. It is intended to serve
as a guide to current and reliable developers of CM tools. The
complete 468 page report can be obtained from

Ovum Ltd. 1 Mortimer Street, London W1N 7RH UK
Tel: +44 (0) 171 255 2670 Fax: +44 (0) 171 255 1995

Ovum, Inc. 1 New England Executive Park, Burlington MA 01803
Tel: +1 800 642 OVUM +1 781 272 6414 Fax: +1 781 272 7446
28

Name C
CCC/Harvest P
Change Man S
ClearCase R
Continuus C
Endevor for MVS C
PVCS In
PCVS Processs Manager In
Razor T
Source Integrity M
Team Connection IB
TRUEchange T
Ovum evaluated the effectiveness of eleven CM tools in the
areas of Team Support, Remote Development, Configuration Man-
agement, Change Management, Build and Release Support, Pro-
cess Management, Web Support, Year 2000 Support, Usability,
and Administration. This CM Tool Summary identifies the “Key
Points,” “Strengths,” and “When to use” results of that evalua-
tion. It will assist users in building a short list of qualified CM tool
providers. It is then the user’s responsibility to contact the tool
providers of their choice for more detailed product information.
For those users desiring it, Ovum’s complete 468 page report on
these eleven CM tools plus a directory of nineteen other CM tools,
would serve as a valuable aid and reference in the selection and
deployment of a CM tool.
Software Technology Support Center

ompany
latinum Technology
erena Software
ational Software
ontinuus Software Corporation
omputer Associates International
tersolv
tersolv

ower Concepts, Inc
ortice Kern Systems (MKS)
M

RUE Software

CCC/Harvest
Platinum Technology Tel: 630-620-5000
1815 South Meyers Road Fax: 630-691-0710
Oakbrook Terrace IL 60181, USA http://www.platinum.com

Key points
· Unix and NT clients and servers, plus Windows, Windows

95, and OS/2 clients
· Uses Oracle database for metadata
· Consistent GUI across all platforms
Strengths
· Simple to set up
· Good process control
· Good change package support
When to use

This is a tool best suited for those projects with simple, well-
defined, development or maintenance processes. The tool
can be readily set up to match existing processes.

Change Man
Serena Software Tel: 650-696-1800
500 Airport Boulevard, 2nd Floor Fax: 650-696-1849
Burlingame CA 94010-1904 http://www.serena.com
USA http://www.optima.com

Key points
· IBM mainframe products with variants tuned to different envi-

ronments
· Change data held in VSAM control file
· Change package style of working
Strengths
· Good lifecycle support
· Good management of production integrity
· Excellent file merge capability
When to use

A strong contender for many mainframe sites, particularly
those with distributed mainframe operations, or those requir-
ing a high degree of integrity for software changes to the
production environment. The change package approach and
lifecycle processes provide good control over changes. De-
velopment and production standards are well supported,
but Change Man has the flexibility to support emergency
procedures.

Support for maintaining the integrity of production sites as
approved change packages are released (including geographi-
cally remote sites) is very good.
Software Configuration Management Technologies and Applications
ClearCase
Rational Software Tel: 408-863-9900
18880 Homestead Road
Cupertino CA 95014, USA http://www.rational.com

Key points
· Client-server support on Windows NT and most Unix plat-

forms, with Windows 3.1, 3.11, 95, and NT clients available
with attache

· Uses Raima database manager technology
· Transparent to existing development tools and practices
Strengths
· Good support for remote development with MultiSite
· Excellent support for parallel development and file merging
· Good distributed build support, significantly reducing build times
When to use

ClearCase is suited to medium-to-large-scale Windows or
Unix development projects, or for organizations migrating from
Unix to NT development environments. Smaller teams doing
extensive porting work would also benefit. The tool is espe-
cially useful for those operating with teams on multiple sites.
ClearCase supports heterogeneous environments of PC and
Unix systems and, with MultiSite, gives good support for re-
mote development teams.

ClearCase would inflict a heavy burden on small projects,
or if applied to small system maintenance activities.

Continuus
Continuus Software Corporation Tel: 714-453-2200
108 Pacifica Fax: 714-453-2276
Irvine CA 92618, USA http://www.continuus.com

Key points
· Repository based on an Informix RDBMS
· Runs on Unix and Windows NT servers, with Unix and Win-

dows NT, 95, and 3.x clients
· Supports parallel development and geographically distributed

teams
Strengths
· Good build management support
· Good task process support
· Good web development support
When to use

Mature CM practitioners (those that have progressed through
version control) that understand CM and need to implement
some measure of process, should highly consider this tool.
Aspects that suit Continuus include: (1) enterprise-wide SCM
since it can be adapted to fulfill the requirements of most
projects; (2) need for strong process support, although some
low-level modifications may be necessary to match your own
model; and (3) management of Web and intranet sites.
29

Endevor for MVS
Computer Associates International Tel: 800-225-5224,
One Computer Associates Plaza 516-342-5224
Islandia NY 11788 Fax: 800-225-5734,
USA 516-342-5329
http://www.cai.com
http://www.cai.com/solutions/year2000/ccm/products.htm
http://www.cai.com/solutions/os390/ccm/

Key points
· IBM mainframe product with variants for client-server and

distributed environments
· Integrates with CA’s systems management and year 2000

solutions, and other third-party tools
· Part of a large CA product portfolio
Strengths
· Good lifecycle support
· Good management of Production integrity
· Good audit trail of changes
When to use

If you already use Endevor for MVS, then you should con-
tinue with it.

CA is concentrating its efforts on integrating its MVS solution
with its client-server variants. If this is the direction your orga-
nization is heading, then Endevor is a competent solution.
Otherwise, you should take a careful look at the alternative
companies, which are committed to mainframe CM products.

PVCS
Intersolv Tel: 301-835-5000
9420 Key West Avenue Fax: 301- 838-8064
Rockville MD 20850, USA http://www.intersolv.com

Key points
· Works across heterogeneous LANs
· Runs under Microsoft Windows, OS/2 PM, and Unix
· Has a large and well-established user base
Strengths
· Industry-standard product
· Integrates with a large variety of third-party tools
· Simple and easy to use
When to use

PVCS is well suited to projects where the principal require-
ment is for Version Management and where parallel develop-
ment is an occasional need, rather than a regular established
way of working. It operates heterogeneously across a wide
range of platforms.

PVCS Tracker provides good added capability for users need-
ing integrated change management and problem tracking.
30
PVCS Process Manager
Intersolv Tel: 301-835-5000
9420 Keywest Avenue Fax: 301-838-8064
Rockville MD 20850, USA http://www.intersolv.com

Key points
· Clients and servers are Windows NT, Unix, VAX and AXP

Open VMS, with Windows, Windows 95, and Internet clients
· Uses the Oracle Relational database
· Interoperability with PVCS Version Manager providing trans-

parent process support
Strengths
· Strong control over lifecycle processes, well supported by

wizards to aid process definition
· Good change and problem management
· Good web and intranet support
When to use

Process manager is applicable to a wide range of develop-
ment needs. It is particularly suited to users with a growing
need for process automation, and for users with a mixed
range of hardware and software environments.

This product is now being sold as part of the PVCS Dimen-
sions suite. Ovum cautions users to check carefully and pre-
cisely what features are being offered for sale under the
Dimensions name.

Razor
Tower Concepts Inc Tel: 315-363-8000
248 Main Street Fax: 315-363-7488
Oneida NY 13421, USA http://www.tower.com

Key points
· Unix clients and servers plus Windows 95/NT clients
· Own database maintained in RAM and flushed to ASCII files

for access by external tools
· Targeted at file version and issue management and CM
Strengths
· Simple to set up
· Good issue management
· Good value for money
When to use

Razor is a tool best suited for projects using a single reposi-
tory with well-defined development or maintenance processes,
and/or where problem tracking and change management are
an important requirement. The tool can be readily set up to
match the existing processes. If the built-in capability for pro-
cess support is not sufficient, users can implement their own
process using shell scripts and triggers (but see Ovum’s res-
ervations about this capability in Lifecycle support).

Do not be misled by the low price – this product has a good
all-around CM capability.
Software Technology Support Center

Source Integrity
Mortice Kern Systems (MKS) Tel: + (1) 519-884-2251
185 Columbia Street West Fax: + (1) 519-884-8861
Waterloo Ontario N2L 5Z5
Canada http://www.mks.com

Key points
· Works across heterogeneous LANs
· Runs under DOS, Microsoft Windows, Windows NT, Win-

dows 95, OS/2, and Unix with an X/Motif GUI
· Has a large and well-established user base
Strengths
· Excellent problem tracking and change management fea-

tures associated with automatic e-mail notification and re-
minders between team members

· Good web content management with Web Integrity
· Inexpensive
When to use

Source Integrity is suitable for use on small to medium-sized
projects operating over a LAN, where it offers a good all-
around capability for most CM needs, provided that parallel
development is an occasional requirement rather than an
established way of working.

Ovum recommends that users consider Source Integrity
Professional Edition to gain the full associated benefits of
problem tracking and change management support.

Webmasters should give serious consideration to the man-
agement support provided by Web Integrity.

TeamConnection
IBM Direct Sales Tel: 800-426-2255 Ext. 31825
Attn. Linda Davis
7100 Highlands Parkway
Smyrna GA 30082

http://www.software.ibm.com/ad/teamcon
Or contact any IBM office worldwide

Key points
· AIX, HP-UX, Solaris, OS/2 & Windows NT clients and serv-

ers, plus Windows 95 clients
· Uses IBM’s DB2 Universal Database
· Supports electronic deployment of application software
Strengths
· Excellent merge tool for parallel development
· Good defect and change management
· Good build support
When to use

A good CM tool with good all-around capability for most
development team requirements, but not suited to remote
development with closed repositories.
Software Configuration Management Technologies and Applications
TRUEchange
TRUE Software Tel: 781-890-4450
300 Fifth Avenue Fax: 781-890-4452
Waltham MA 02451 http://www.truesoft.com

Key points
· Unix, NT and VMS servers; with Windows (all variants), Unix,

NT, VMS, and MVS clients
· Uses its own internal repository system
· Originator of change-set methodology
Strengths
· Good management level reporting
· Good release management and conflict detection
· Good change management
When to use

TRUEchange is ideally suited for managing the on-going
flow of changes to production applications, particularly in
large IT organizations moving mission-critical systems to the
distributed world.

It is not limited to maintenance projects. The principles are
always applicable, but the product would have fewer com-
petitors in a maintenance context than in a development
context. TRUEchange is available on a wide range of plat-
forms and will be of special interest to users with heteroge-
neous development environments.

TRUEchange with TRUEtrack has a good all-around SCM
capability, and should not be viewed solely in the context of
the change set technology.

TRUErelease extends the product range capability to es-
tablish the integrity of applications before they are distributed
for production use.
31

Training and
Education C

Appendix
Software Technology Support Center (STSC)
OO-ALC/TISE
7278 Fourth St.
Hill AFB, UT 84056-5205
Voice: Paul Hewitt, DSN 775-5742 (801)775-5742

Reed Sorensen, DSN 775-5738 (801)775-5738
Russ Lee, DSN 775-5740 (801)775-5740

Fax: DSN 777-8069 (801)777-8069
Internet: hewittp@software.hill.af.mil

 sorenser@software.hill.af.mil
 leeru@software.hill.af.mil

STSC offers the following services:
· Configuration Management Workshop
· Capability Evaluation
· Executive Session
· Tools Evaluation, and
· Other consulting services that assist software development,

maintenance, and acquisition organizations

Software Engineering Institute (SEI)
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Voice: 412-268-5800
E-mail: customer-relations@sei.cmu.edu
Internet: http://www.sei.cmu.edu

SEI offers the following courses:
· CBA Lead Assessor Training
· Defining Software Processes
· Implementing Goal-Driven Software Measurement
· Introducing New Software Technology
· Introduction to the Capability Maturity Model for Software
· Introduction to the People Capability Maturity Model
· Introduction to the Software Acquisition Capability Maturity

Model
32
IEEE
445 Hoes Lane Voice:732-562-3811
P.O. Box 1331 Fax: 732-562-1571
Piscataway, N.J. 08855-1331 E-mail: p.gerdon@ieee.org

IEEE offers the following courses (some on-site):
· Software Configuration Management
· Software Project Management
· Software Quality Assurance
· Software Requirements Specifications
· Software Reviews and Audits
· Software Testing
· Software Verification & Validation

Abelia Corporation
12224 Grassy Hill Court Voice: 703-591-5247
Fairfax, VA 22033-2819
Internet: http://www.abelia.com/sep98.htm

· Configuration Management

Configuration Management Training Foundation
Voice: 530-873-2734 Fax: 530-873-4835
E-mail: tracie@cmtf.com

The following courses are offered:
· Configuration Management
· Advanced Configuration Management
· Software Configuration Management
· Intergrated Product Teams
Software Technology Support Center

InRoads Technology, Inc
130 Robin Hill Rd. Suite #120 Voice: (805) 967-4545
Santa Barbara, CA 93117 Fax: (805) 964-4790
E-mail: info@inroadstech.com

· Fundamentals of Software Configuration Management

Institute of Configuration Management
P.O. Box 5656 Voice: (602) 998-8600
Scottsdale, AZ 85261-5656 Fax: (602) 998-8923
E-mail: info@icmhq.com

Courses offered:
· CMII-Based Business Process Infrastructure
· Structured Configuration and Process Information
· Change Forms, Effectivities and Traceability
· Change Administration and Change Processing
· Enterprise-Wide CM Plan and Procedures
· Process Improvement Plan and Implementation
· Software Configuration Management
· Software CM Process Improvement

Integrated Support Systems
Voice: 864-654-1284, extension 110
E-mail: training@isscorp.com

· Configuration Management

Learning Tree
Voice: 800-843-8733

· Software Configuration Management

Lexington Software Associates
6 New England Executive Park Voice: 978-266-2730
Suite 400 Fax: 978-266-2984
Burlington, MA 01803 E-mail: sales@lsai.com

· Courses focusing on ClearCase for CM
Software Configuration Management Technologies and Applications
Patriate Limited
Eagle House Voice: 01-344 382111
The Ring Fax: 01-344 304728
Bracknell E-mail: info@patriate.com
Berkshire. RG12 1HB

· Courses focusing on ClearCase, ClearDDTS, and ClearGuide

System Technology Institute, Inc.
P.O. Box 6907 Voice: 310-457-0851
Malibu, CA 90264-6907 Fax: 310-457-0951
E-mail: STIclass@aol.com

· Courses on Software Engineering, Management, and Assur-
ance Training

Technology Training Corporation
3420 Kashiwa Street Voice: (310) 534-3922
Los Angeles, California 90505 Fax: (310) 534-2964
E-mail: ttchq@ttcus.com

· Contact organization for specific course information

Value Added Systems Technology, Inc
Voice: 770-988-2792
info@vastcorp.com

· Contact organization for specific course information
33

Software Technology Support Center’s
SCM Services D

Appendix
STSC Introduction
In 1987, the U.S. Air Force selected Ogden Air Logistics
Center at Hill Air force Base, Utah to establish and operate
its Software Technology Support Center (STSC). It was
chartered to be the command focus for pro-active applica-
tion of software technology in weapons, command and con-
trol, intelligence, and mission-critical systems.

The STSC provides hands-on assistance in adopting ef-
fective technologies for software-intensive systems. We help
organizations identify, evaluate, and adopt technologies that
improve software product quality, production efficiency, and
predictability.

We use the term technology in its broadest sense to in-
clude processes, methods, techniques, and tools that enhance
human capability. Our focus is on field-proven technolo-
gies that will benefit the DoD mission.

SCM Services
The STSC Configuration Management (CM) team provides
consultation services for U.S. Air Force and other governmant
organizations to understand, evaluate, and adopt software
configuration management technologies with the goal of
improve productivity, predictability, and maturity of their
software processes.

The CM team is committed to helping you reach and
maintain your software process improvement objectives. We
will help you formulate a systematic strategy for success
through on-site evaluations and discussions with key per-
sonnel, make recommendations for changes and improve-
ments, and most important, we will be there to guide your
34
organization step by step through the entire software pro-
cess improvement effort.

The CM Team comprises government civilian and con-
tractor employees located at Hill Air Force Base. Contractor
support is provided by TRW. Experience averages 20 years
for each team member in software development, documen-
tation, acquisition, planning, configuration management, op-
erating systems, and programming in Assembly, COBOL,
FORTRAN, JOVIAL J3B, and J73, Ada, C, and C++. Team
members have applied the processes and methods covered
by DOD-STD-2167A, MIL-STD-498, J-STD-016-1995,
MIL-STD-1553, and MIL-STD-1553B.

Successful adoption of CM is a complex task. The STSC’s
approach is to team with software organizations. Periodic
review by the STSC every four to six weeks focuses SEPG
members, management, and practitioners on the adoption
effort. The support and guidance that is provided by an STSC
representative is a key to maintaining focus and achieving
success.

The STSC provides the following SCM services:

· Configuration Management Workshop. The CM Work-
shop is designed for software development and mainte-
nance organizations that are interested in succeeding at
CM, that want to achieve process maturity as specified
in the SEI SW-CMM, and that need to understand CM
as specified in both commercial and military standards.

· Capability Evaluation. This service is designed for soft-
ware development and maintenance organizations that
Software Technology Support Center

are interested in implementing CM or want to achieve
CM process maturity.

· Executive Session. The CM Executive Session provides
basic education and orientation to senior and upper
midlevel managers about CM. Each session is custom-
ized to the needs of the executives. They can select which
topics are of interest to them.
Software Configuration Management Technologies and Applications
· Tools Evaluation. Once an organization has developed
an effective process and determined its methods, the se-
lection and use of software tools is appropriate. The
STSC tool evaluation method addresses the typical is-
sues of incomparable evaluations, marketing hype, and
individual biases.
35

Overview of SEI’s
Software Capability Maturity Model E

Appendix
The following material is taken from SEI SW-CMM: Guide-
lines for Improving the Software Process. [Paulk 95]

Overview
 “The Capability Maturity Model for Software developed by
the SEI is a framework that describes the key elements of an
effective software process. The SW-CMM describes an evo-
lutionary improvement path for software organizations from
an ad hoc, immature process to a mature, disciplined one.
This path is encompassed by five levels of maturity.
36

Table 1. SW-CMM Levels and Characteristics [Paulk 95]

The software process is characterized as adhoc and occasionally ev
chaotic. Few processes are defined, and success depends on individ
effort and heroics.

Basic project management processes are established to track cost, sche
ule, and functionality. The necessary process discipline is in place to rep
earlier successes on project with similar applications.

The software process for both management and engineering activities
documented, standardized, and integrated into a standard software p
cess for the organization. All projects use an approved, tailored version
the organization’s standard software process for development and ma
taining software.

Detailed measure of the software process and product quality are collect
Both the software process and products are quantitatively understood a
controlled.

Continuous process improvement is enabled by quantitiatve feedback fr
the process and for piloting innovative ideas and technologies.

5
Optimizing

Level Characteristic

2
Repeatable

1
Initial

3
Defined

4
Managed
 “The SW-CMM guides software organizations that want
to gain control of their processes for developing and main-
taining software and to evolve toward a culture of software
engineering and management excellence. Its purpose is to
guide these organizations in selecting process improvement
strategies by determining their current process maturity
and identifying the few issues most critical to improving
their software process and software quality..” [Paulk 95]
The following table lists the key process areas and charac-
teristics for each level.
Software Technology Support Center

en
ual

d-
eat

 is
ro-
 of
in-

ed.
nd

om

Key Process Area

Requirements management Software subcontract management
Software project planning Software quality assurance
Software project tracking & oversight Software configuration management

Organization process focus Software product engineering
Organization process definition Intergroup coordination
Training program Peer reviews
Integrated software management

Quantitative process Software quality management

Defect prevention Technology change management

SCM in the CMM
The SCM KPA consists of the following goals, commit-
ment, abilities, activities, measurement and verifications.
They are specified in [Paulk 95]. The goals are:

1. SCM activities are planned
2. Selected software work products are identified, con-

trolled, and available
3. Changes to identified software work products are

controlled, and
4. Affected groups and individuals are informed of the

status and content of software baselines.

The commitment is the project follows a written orga-
nizational policy for implementing SCM.

The abilities consist of the following:

1. A board having the authority for managing the
project’s software baselines exists or is established

2. A group that is responsible for coordinating and
implementing SCM for the project exists

3. Adequate resources and funding are provided for
performing the SCM activities, and

4. Members of the SCM group are trained in the ob-
jectives, procedures, and methods for performing
their SCM activities.

The activities are:
1. An SCM plan is prepared for each software project

according to a documented procedure
2. A documented and approved SCM plan is used as

the basis for performing the SCM activities
3. A configuration management library system is es-

tablished as a repository for the software baselines
Software Configuration Management Technologies and Applications
4. The software work products to be placed under con-
figuration management are identified

5. Change requests and problem reports for all con-
figuration items/units are initiated, recorded, re-
viewed, approved, and tracked according to a docu-
mented procedure

6. Changes to baselines are controlled according to a
documented procedure

7. Products from the software baseline library are cre-
ated and their release is controlled according to a
documented procedure

8. The status of configuration items/units is recorded
according to a documented procedure

9. Standard reports documenting the SCM activities
and the contents of the software baseline are devel-
oped and made available to affected groups and in-
dividuals, and

10. Software baseline audits are conducted according
to a documented procedure.

The measurement is measurements are made and used
to determine the status of the SCM activities.

The verifications are:
1. The SCM activities are reviewed with senior man-

agement on a periodic basis
2. The SCM activities are reviewed with the project

manager on both a periodic and event-driven basis
3. The SCM group periodically audits software

baselines to verify that they conform to the docu-
mentation that defines them, and

4. The software quality assurance group reviews and/
or audits the activities and work products for SCM
and reports the results.
37

Acronyms
and Glossary F

Appendix
Acronyms
AF Air Force
AFSCM Air Force Systems Command Manual
ASCII American Standard Code for Information Interchange
ASSET Asset Source for Software Engineering Technology
CALS Computer-Aided Acquisition and Logistics Support
CASE Computer-Aided Software (or Systems) Engineering
CI Configuration Item
CCB Configuration Control Board
CDR Critical Design Review
CSC Computer Software Component
CSCI Computer Software Configuration Item
CM Configuration Management
CMM Capability Maturity Model
CMU Carnegie Mellon University
DARPA Defense Advanced Research Projects Agency
DoD Department of Defense
ECS Electronic Customer Services
EIA Electronic Industry Association
ESIP Embedded Computer Resources Support Improvement

Program
FCA Functional Configuration Audit
GUI Graphical User Interface
HCM Hardware Configuration Management
IEEE Institute of Electrical and Electronics Engineers
IPSE Integrated Project Support Environment
ISO International Organization for Standardization
KPA Key Process Area
LAN Local Area Network
38
MIS Management Information System
NASA National Aeronautics and Space Administration
PC Personal Computer
PCA Physical Configuration Audit
PCTE Portable Common Tool Environment
PDR Preliminary Design Review
QA Quality Assurance
RCS Revision Control System
SCCB Software Configuration Control Board
SCCS Source Code Control System
SCML Software Configuration Manager Library (IBM)
SCM Software Configuration Management
SDP Software Development Plan
SDR System Design Review
SEI Software Engineering Institute
SEPG Software Engineering Process Group
SQA Software Quality Assurance
SQL Software Query Language
S/SEE System/Software Engineering Environment
STARS Software Technology for Adaptable Reliable Systems
STC Software Technology Conference
STD Standard
STSC Software Technology Support Center
SW-CMM Capability Maturity Model for Software
VDD Version Description Document
WWISCUC World-Wide Information System Common User

Contract
WWMCCS World-Wide Military Command and Control System
Software Technology Support Center

Glossary
Unless otherswise noted, all references are from [IEEE 90].
Allocated Baseline. The initial approved specifications governing
the development of configuration items that are part of a higher
level configuration item.

Architecture. The organizational structure of a system or com-
ponent.

Audit. An independent examination of a work product or set of
work products to assess compliance with specifications, stan-
dards, contractual agreements, or other criteria.

Baseline. A specification or product that has been formally re-
viewed and agreed upon, that thereafter serves as the basis for
further development, and that can be changed only through
formal change control procedures.

Capability Maturity Model (CMM). A description of the stages
through which software organizations evolve as they define,
implement, measure, control, and improve their software pro-
cesses. This model provides a guide for selecting process im-
provement strategies by facilitating the determination of cur-
rent process capabilities and the identification of the issues most
critical to software quality and process improvement [Paulk 93].

Checkout . Testing conducted in the operational or support
environment to ensure that a software product performs as re-
quired after installation.

Complexity. The degree to which a system or component has a
design or implementation that is difficult to understand and verify.

Component. One of the parts that make up a system. A compo-
nent may be hardware or software and may be subdivided into
other components.
Software Configuration Management Technologies and Applications
Computer-Aided Software Engineering (CASE). The use of com-
puters to aid in the software engineering process. May include the
application of software tools to software design, requirements trac-
ing, code production, testing, document generation, and other
software engineering activities.

Computer Software Component (CSC). A functionally or logi-
cally distinct part of a computer software configuration item,
typically an aggregate of two or more software units.

Computer Software Configuration Item (CSCI). An aggregation of
software that is designated for configuration management and treated
as a single entity in the configuration management process.

Configuration. The functional and physical characteristics of
hardware or software as set forth in technical documentation or
achieved in a product.

Configuration Control. An element of configuration management
that consists of the evaluation, coordination, approval or disapproval,
and implementation of changes to configuration items after formal
establishment of their configuration identification.

Configuration Control Board (CCB). A group of people who
evaluates and approves or disapproves proposed changes to configu-
ration items and ensures implementation of approved changes.

Configuration Identification. An element of configuration man-
agement that consists of selecting the configuration items for a
system and recording their functional and physical characteris-
tics in technical documentation.

Configuration Item (CI). An aggregation of hardware or software
or both that is designated for configuration management and treated
as a single entity in the configuration management process.
39

Configuration Item Development Record. A document used in
configuration management that describes the development status
of a configuration item based on the results of configuration audits
and design reviews.

Configuration Management (CM). A discipline that applies tech-
nical and administrative direction and surveillance to identify and
document the functional and physical characteristics of a configu-
ration item, control changes to those characteristics, record and
report change processing and implementation status, and verify
compliance with specified requirements.

Configuration Status Accounting. An element of configura-
tion management that records and reports information needed
to manage a configuration effectively. This information includes
a listing of the approved configuration identification, the status
of proposed changes to the configuration, and the implementa-
tion status of approved changes.

Critical Design Review (CDR). A review conducted to verify
that the detailed design of one or more configuration items sat-
isfies specified requirements; to establish the compatibility among
the configuration items and other items of equipment, facili-
ties, software, and personnel; to assess risk areas for each con-
figuration item; and as applicable, to assess the results of
producibility analyses, review preliminary hardware product
specifications, evaluate preliminary test planning, and evaluate
the adequacy of preliminary operation and support documents.

Functional Baseline. The initial approved technical documen-
tation for a configuration item.

Functional Configuration Audit (FCA). An audit conducted to
verify that the development of a configuration item has been satis-
factorily completed, that the item has achieved the performance
and functional characteristics specified in the functional or allo-
cated configuration identification, and that its operational and
support documents are complete and satisfactory.
40
Hierarchy. A structure in which components are ranked into levels of
subordination; each component has zero or one or more subordinates,
and no component has more than one superordinate component.

Interface. A hardware or software component that connects two or
more other components to pass information from one to the other.

Key Process Area (KPA). A cluster of related activities that, when
performed collectively, achieve a set of goals that are important for
establishing process capability. The key process areas have been
defined to reside at a single maturity level. They are the areas
identified by the SEI to be the principal building blocks to help
determine the software process capability of an organization and
understand the improvements needed to advance to higher matu-
rity levels [Paulk 93].

Maturity Level. A well-defined evolutionary plateau toward
achieving a mature software process. The five maturity levels in
the SEI’s Capability Maturity Model are initial, repeatable, de-
fined, managed, and optimizing [Paulk 93].

Module. A program unit that is discrete and identifiable with
respect to compiling, combining with other units, and loading;
for example, the input to or the output from an assembler, com-
piler, linkage editor, or executive routine.

Physical Configuration Audit (PCA). An audit conducted to
verify that a configuration item as built conforms to the techni-
cal documentation that defines it.

Preliminary Design Review (PDR). A review conducted to evaluate
the progress, technical adequacy, and risk resolution of the selected
design approach for one or more configuration items; to determine
each design’s compatibility with the requirements for the configura-
tion item; to evaluate the degree of definition and assess the technical
risk associated with the selected manufacturing methods and pro-
cesses; to establish the existence and compatibility of the physical and
functional interfaces among the configuration items and other items
of equipment, facilities, software, and personnel and, as applicable, to
evaluate the preliminary operational and support documents.
Software Technology Support Center

Product Baseline. The initial approved technical documentation
(including, for software, the source code listing) defining a con-
figuration item during the production, operation, maintenance,
and logistic support of its lifecycle.

Product Configuration Identification. The current approved or
conditionally approved technical documentation that defines a
configuration item during the production, operation, maintenance,
and logistic support phases of its lifecycle. It prescribes all neces-
sary physical or form, fit, and function characteristics of a configu-
ration item, the selected functional characteristics designated for
production acceptance testing, and the production acceptance tests.

Project Plan. A document that describes the technical and man-
agement approach to follow for a project. The plan typically
describes the work to be done, the resources required, the meth-
ods to use, the procedures to follow, the schedules to meet, and
the way that the project will be organized.

Quality Assurance (QA). A planned and systematic pattern of
all actions necessary to provide adequate confidence that an item
or product conforms to established technical requirements.

Release. The formal notification and distribution of an approved
version.

Software Configuration Control Board (SCCB). See Configu-
ration Control Board.

Software Development Plan (SDP). A collection of plans that
describe the activities to be performed for the software project.
It governs the management of the activities performed by the
software engineering group for a software project [Paulk 93].

Software Engineering. The application of a systematic, disciplined,
quantifiable approach to the development, operation, and mainte-
nance of software.

Software Engineering Environment. The hardware, software, and
firmware used to perform a software engineering effort. Typical
Software Configuration Management Technologies and Applications
elements include computer equipment, compilers, assemblers, oper-
ating systems, debuggers, simulators, emulators, test tools, docu-
mentation tools, and database management systems.

Software Engineering Group. A group comprising both man-
agers and technical staff who have responsibility for software
development and maintenance activities, i.e., requirements analy-
sis, design, code, and test, for a project. Groups performing
software-related work, such as the Software Quality Assurance
Group, the Software Configuration Management Group, and
the Software Engineering Process Group, are not included in
the Software Engineering Group [Paulk 93].

Software Engineering Process Group (SEPG). A group of special-
ists who facilitate the definition, maintenance, and improvement of
the software process used by the organization [Paulk 93].

Software Library. A controlled collection of software and re-
lated documentation designed to aid in software development,
use, or maintenance. Types include master library, production
library, software development library, software repository, and
system library.

Software Lifecycle. The period that begins when a software
product is conceived and ends when the software is no longer
available for use. The software lifecycle typically include a con-
cept phase, requirements phase, design phase, implementation
phase, test phase, installation and checkout phase, operation
and maintenance phase, and sometimes, retirement phase.

Software Process Maturity. The extent to which a specific pro-
cess is explicitly defined, managed, measured, controlled, and
effective. Maturity implies a potential for growth in capability and
indicates both the richness of an organization’s software process
and the consistency with which it is applied in projects through-
out the organization [Paulk 93].

System Design Review (SDR). A review conducted to evaluate
the manner in which the requirements for a system have been
allocated to configuration items, the system engineering pro-
41

cess that produced the allocation, the engineering planning for the
next phase of the effort, manufacturing considerations, and the
planning for production engineering.

Version. An initial release or re-release of a computer software
configuration item, associated with a complete compilation or
recompilation of the computer software configuration item. Also
for documentation, an initial release or complete re-release of a
document, as opposed to a revision resulting from issuing change
pages to a previous release.
42
Version Description Document (VDD). A document that accom-
panies and identifies a given version of a system or component.
Typical contents include an inventory of system or component
parts, identification of changes incorporated into this version, and
installation and operating information unique to the version de-
scribed.
Software Technology Support Center

Bibliography G
Appendix
[ANSI/IEEE 87] ANSI/IEEE Std 1042-1987, American Na-
tional Standard IEEE, Guide to Software Configuration
Management, Institute of Electrical and Electronics En-
gineers, Inc., New York, N.Y., 1988.

[Ayer 92] Ayer, Steve J., and Frank S. Patrinostro, Software Con-
figuration Management: Identification, Accounting, Con-
trol, and Management, McGraw-Hill Software Engineer-
ing Series, McGraw-Hill, 1992.

[Babich 86] Babich, Wayne A., Software Configuration Man-
agement: Coordination for Team Productivity, Addison-
Wesley, 1986.

[Ben-Menachem 94] Ben-Menachem, Mordechai, Software Con-
figuration Management Guidebook, McGraw-Hill, 1994.

[Berlack 92] Berlack, Ronald H., Software Configuration Man-
agement, John Wiley & Sons, New York, 1992.

[Boehm 81] Boehm, Barry, “Software Engineering Economics”,
1981.

[Bounds 96] Bounds, Nadine M. and Susan A. Dart, Configu-
ration Management Plans: The Beginning to Your CM So-
lution, Software Engineering Institute, Carnegie Mellon
University, February 1996.
Software Configuration Management Technologies and Applications
[Bray 95] Bray, Olin and Michael M. Hess, “Reengineering a
Configuration Management System,” IEEE Software, Janu-
ary 1995.

[Buckley 92] Buckley, Fletcher J., Implementing Configuration
Management: Hardware, Software, and Firmware, IEEE
Computer Society Press, Los Alamitos, Calif., 1993.

[Buckley 94] Buckley, Fletcher J., “Implementing a Software
Configuration Management Environment,” IEEE Com-
puter, 1994.

[Butler 95] Butler, Kelley L., “The Economic Benefits of Soft-
ware Process Improvement”, CrossTalk, The Defense Jour-
nal of Software Engineering, Software Technology Sup-
port Center, July 1995.

[Burrows 96] Burrows, Clive, George W. George, and Susan
Dart, Ovum Evaluates Configuration Management, Ovum
Limited, 1996.

[Burrows 98] Burrows, Clive, and Ian Wesley, Ovum Evaluates
Configuration Management, Ovum Limited, 1998.

[Carnegie 98] Carnegie Mellon University and the Software En-
gineering Institute, “The ’98 Software Engineering Sym-
posium Preliminary Program”, 1998.

[Carr 93] Carr, M., S. Kondra, I. Monarch, F. Ulrich, and C.
Walker, Taxonomy-Based Risk Identification, Technical Re-
43

port CMU/SEI-93-TR-6, Software Engineering Institute,
Carnegie Mellon University, 1996.

[Conner 82] Conner, Daryl R. and Robert W. Patterson, “Build-
ing Commitment to Organization Change,” Training and
Development Journal, Vol. 36, No. 4, April 1982, pp. 18-
30.

[Dart 90a] Dart, Susan A., “Issues in Configuration Manage-
ment Adoption,” Proceedings of Conference on Caseware,
Software Engineering Institute Overview, Carnegie
Mellon University, Pittsburgh, Pa., 1990.

[Dart 90b] Dart, Susan A., Spectrum of Functionality in Con-
figuration Management Systems, Technical Report CMU/
SEI-90-TR-11, ESD-90-TR-212, Software Engineering
Institute, Carnegie Mellon University, 1990.

[Dart 92a] Dart, Susan A., “State-of-the-Art in Environment
Support for Configuration Management,” ICSE 14 Tu-
torial, Australia, Carnegie Mellon University, Pittsburgh,
Pa, May 1992.

[Dart 92b] Dart, Susan A., The Past, Present, and Future of Con-
figuration Management, Technical Report CMU/SEI-92-
TR-8, ESC-TR-92-8, Software Engineering Institute,
Carnegie Mellon University, July 1992.

[Dart 94] Dart, Susan A., “Adopting an Automated Configura-
tion Management Solution”, Proceedings of Software Tech-
nology Conference, April 1994.

[Dart 96] Dart, Susan, A., “Achieving the Best Possible Configu-
ration Management Solution,” CrossTalk, The Defense Jour-
nal of Software Engineering, Software Technology Support
Center, Hill Air Force Base, UT, September 1996.

[DeGrace 90] DeGrace, Peter and Leslie Hulet Stahl, “Wicked
Problems, Righteous Solutions,” A Catalogue of Modern Soft-
44
ware Engineering Paradigms, Yourdon Press, Englewood
Cliffs, N.J., 1990.

[Evans 97] Evans, Michael W. and Shawn T. O’Rourke,
“CenterZone Management: The Relationship Between
Risk Management and Configuration Management in a
Software Project”, Proceedings of Software Technology Con-
ference, April 1997.

[Feiler 91] Feiler, Peter H., Configuration Management Models in
Commercial Environments, Technical Report CMU/SEI-91-
TR-7, ESD-9-TR-7, Software Engineering Institute,
Carnegie Mellon University, March 1991.

[Feiler 90] Feiler, Peter H. and Grace Downey, Transaction-Ori-
ented Configuration Management: A Case Study, Techni-
cal Report CMU/SEI-90-TR-23, ESD-90-TR-224, Soft-
ware Engineering Institute, Carnegie Mellon University,
November 1990.

[Firth 87] Firth, Robert, et al., A Guide to the Classification and
Assessment of Software Engineering Tools, Technical Re-
port CMU/SIE-87-TR-10, ESD-TR-87-111, Software
Engineering Institute, Carnegie Mellon University, Au-
gust 1987.

[Forte 90] Forte, Gene, “Configuration Management Survey,”
CASE Outlook 90(2), 1990.

[Fowler 88] Fowler, Pricilla and Stan Przybylinski, “Transferring
Software Engineering Tool Technology,” IEEE Computer
Society Press, Washington, D.C., 1988.

[Guidelines 96] Guidelines for Successful Acquisition and Manage-
ment of Software-Intensive Systems: Weapon Systems, Com-
mand and Control Systems, Management Information Sys-
tems, Software Technology Support Center, Hill Air Force
Base, UT, June 1996.
Software Technology Support Center

[Haque 97] Haque, Tani, “Process-Based Configuration Manage-
ment: The Way to Go to Avoid Costly Product Recalls,”
CrossTalk, The Defense Journal of Software Engineering, Soft-
ware Technology Support Center, Hill Air Force Base, UT,
April 1997.

[Hermann 98] Hermann, Brian and Russell, Jim, Marshall, “Are
You Ready to Deliver? To Ship? To Test?” CrossTalk, The De-
fense Journal of Software Engineering, Software Technology
Support Center, Hill Air Force Base, UT, August 1998.

[Humphrey 90] Humphrey, Watts S., Managing the Software Pro-
cess, Addison-Wesley, August 1990.

[ICM 98] Institute of Configuration Management, CMII model,
Course I “CMII-Based Business Process Infrastructure”.

[IEEE 90] IEEE Std 828-1990, IEEE Standard for Software Con-
figuration Management Plans, 1990.

[Kasse 97] Kasse, Tim, “Software Configuration Management for
Project Leaders”, Proceedings of Software Technology Confer-
ence, April 1997

[Kingsbury 96] Kingsbury, Julie, “Adopting SCM Technology,”
CrossTalk, The Defense Journal of Software Engineering, Soft-
ware Technology Support Center, Hill Air Force Base, UT,
March 1996.

[Marshal 95] Marshall, A.J., “Demystifying Software Configura-
tion Management,” CrossTalk, The Defense Journal of Soft-
ware Engineering, Software Technology Support Center,
Hill Air Force Base, UT, May 1995.

[Marshal 95] Marshall, Alexa J., “Software Configuration Man-
agement: Function or Discipline?,” CrossTalk, The Defense
Journal of Software Engineering, Software Technology Sup-
port Center, Hill Air Force Base, UT, October 1995.
Software Configuration Management Technologies and Applications
[MIL-HDBK-61 97] MIL-HDBK-61, Military Handbook: Con-
figuration Management Guidance, Department of Defense,
Sept. 30, 1997.

[Mosley 95] Mosley, Vicky, “Improving Your Process for the Evalu-
ation and Selection of Tools and Environments,” CrossTalk,
The Defense Journal of Software Engineering, Software Tech-
nology Support Center, Hill Air Force Base, UT, Septem-
ber 1995.

[Myers 95] Myers, Robin J., “Configuration Management: A Pre-
requisite for BPR Success,” Enterprise Reengineering, Au-
gust 1995.

[Olson93] Olson, Timothy G., et al., A Software Process Framework
for the SEI Capability Maturity Model: Repeatable Level, Tech-
nical Report CMU/SEI-93-TR-7, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pa., 1993.

[Paulk 93] Paulk, Mark C., et al., Key Practices of the Capability
Maturity Model for Software, Version 1.1, Technical Re-
port CMU/SEI-93-TR-25, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, Pa., 1993.

[Paulk 95] Paulk, Mark C., Charles V. Weber, Bill Curtis, and
Mary Beth Chrissis, The Capability maturity Model:
Guidelines for Improving the Software Process, Software
Engineering Institute, Carnegie Mellon University, Pitts-
burgh, Pa., Oct. 1995.

[Pence 93] Pence, J. L. Pete and Samuel E. Hon III, “Building
Software Quality into Telecommunications Network Sys-
tems,” Quality Progress, Bellcore, Piscataway, N.J., pp.
95-97, Oct. 1993.

[Pitts 97] Pitts, David R., “Metrics: Problem Solved?”, CrossTalk,
The Defense Journal of Software Engineering, Software Tech-
nology Support Center, Hill Air Force Base, UT, Dec. 1997
45

[Platinum 98] © 1995, 1998 PLATINUM technology, inc. All
rights reserved. 1-800-442-6861, 630-620-5000, Fax:
630-691-0718, www.platinum.com.

[Rader 93] Rader, Jack, Ed. J. Morris, and Alan W. Brown, An
Investigation into the State-of-the-Practice of CASE Tool Inte-
gration, Technical Report CMU/SEI-93, Software Engi-
neering Institute, Carnegie Mellon University, Pittsburg,
Pa., 1993.

[Schamp 95] Schamp, Alan, “CM-Tool Evaluation and Selec-
tion,” IEEE Software, 1995.

[Semiatin 94] Semiatin, William J., “Evolution of Configuration
Management,” Program Manager: Journal of the Defense
Systems Management College, November/December 1994.

[Slomer 92] Slomer, Howard M. and Alan M. Christie, Analysis of
a Software Maintenance System: A Case Study, Technical
Report CMU/SEI-92-TR-3, ESC-TR-92-031, Software
Engineering Institute, Carnegie Mellon University, Pitts-
burgh, Pa., Nov. 1992.

[Smith 93] Smith, Dennis, et al., Software Engineering Environ-
ment Evaluation Issues, Technical Report CMU/SEI-93,
Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, Pa., March 1993.

[Softool 92] Softool Corporation, Successful Software Strategies Semi-
nar Series: Improving Your Configuration Management Imple-
mentation Strategy, Washington, D.C., 1992.

[Starbuck 97] Starbuck, Ronald A., “Software Configuration Man-
agement: Don’t Buy a Tool First,” CrossTalk, The Defense
Journal of Software Engineering, Software Technology Sup-
port Center, Hill Air Force Base, UT, Nov. 1997.
46
[Starrett 98] Starrett, Elizabeth C. L., “Measurement 101,”
CrossTalk, The Defense Journal of Software Engineering, Soft-
ware Technology Support Center, Hill Air Force Base, UT,
Aug. 1998.

[STSC 94] Software Technology Support Center, Software Con-
figuration Management Technology Report, Software Tech-
nology Support Center, Hill Air Force Base, UT, Sept.
1994.

[Ventimiglia 97] Ventimiglia, Bob, Advanced Effective Software
Configuration Management, Technology Training Corpo-
ration, 1997.

[Ventimiglia 98] Ventimiglia, Bob, “Effective Software Configu-
ration Management,” CrossTalk, The Defense Journal of Soft-
ware Engineering, Software Technology Support Center,
Hill Air Force Base, UT, Feb. 1998.

[Wallnau 92] Wallnau, Kurt C., Issues and Techniques of CASE
Integration with Configuration Management, Technical
Report CMU/SEI-92-TR-5, ESD-TR-92-5, Software
Engineering Institute, Carnegie Mellon University, Pitts-
burgh, Pa., March 1992.

[Whitgift 91] Whitgift, David, Methods and Tools for Software or
Software Configuration, John Wiley & Sons Inc., New York,
1991.

[Wreden 94] Wreden, Nick, “Configuration Management: Get-
ting with the Program,” Beyond Computing, November/
December 1994.
Software Technology Support Center

Software TSoftware TSoftware TSoftware TSoftware Tececececechnology Supporhnology Supporhnology Supporhnology Supporhnology Support Centert Centert Centert Centert Center
OO-ALC/TISE
7278 4th Street

Hill AFB, Utah 84056
801-775-5555
801-777-8069

www.stsc.hill.af.mil

	Title Page
	Executive Summary
	Table of Contents
	Abstract
	Acknowledgements
	1. Overview of Software CM
	1.1 The Role of SCM
	1.2 State of SCM
	1.3 Current Trends in SCM

	2. Importance of SCM
	2.1 SCM and Process Improvement
	2.2 Measurements and Metrics
	[Side bar] Software Product Maturity Data Rqmts
	2.3 Benefits of SCM

	3. SCM Technology Primer
	3.1 What is SCM?
	3.2 Implementing SCM in the Organization
	3.3 Writing the Formal SCM Plan
	3.4 Automating SCM
	3.5 SCM Standards

	4. SCM Case Studies and Lessons Learned
	4.1 Case Studies
	4.2 Lessons Learned

	Appendix
	A. Availability of Templates, Forms, and Checklists
	B. CM Tool Summary
	C. Training and Education
	D. STSC's SCM Services
	E. Overview of SEI's Software CMM
	F. Acronyms and Glossary
	G. Bibliography

